Skip to main content

A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Included in the following conference series:

Abstract

In this paper, we study the minimal problem of estimating the essential matrix between two cameras with constant but unknown focal length and radial distortion. This problem is of both theoretical and practical interest and it has not been solved previously. We have derived a fast and stable polynomial solver based on Gröbner basis method. This solver enables simultaneous auto-calibration of focal length and radial distortion for cameras. For experiments, the numerical stability of the solver is demonstrated on synthetic data. We also evaluate on real images using either RANSAC or kernel voting. Compared with the standard minimal solver, which does not model the radial distortion, our proposed solver both finds a larger set of geometrically correct correspondences on distorted images and gives an accurate estimate of the radial distortion and focal length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 835–846. ACM, New York (2006)

    Google Scholar 

  2. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of Computer Vision and Pattern Recognition Conference, pp. 125–132 (2001)

    Google Scholar 

  3. McGlone, J., Mikhail, E., Bethel, J., Mullen, R.: Manual of Photogrammetry. American Society for Photogrammetry and Remote Sensing, Maryland (2004)

    Google Scholar 

  4. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Rob. Autom. 3, 323–344 (1987)

    Article  Google Scholar 

  5. Devernay, F., Faugeras, O.D.: Straight lines have to be straight. Mach. Vis. Appl. 13, 14–24 (2001)

    Article  Google Scholar 

  6. Swaminathan, R., Nayar, S.K.: Nonmetric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1172–1178 (2000)

    Article  Google Scholar 

  7. Kang, S.: Semiautomatic methods for recovering radial distortion parameters from a single image. Cambridge Research Laboratory technical report series. Digital, Cambridge Research Laboratory (1997)

    Google Scholar 

  8. Barreto, J., Daniilidis, K.: Fundamental matrix for cameras with radial distortion. In: IEEE International Conference on Computer Vision, Beijing, China (2005)

    Google Scholar 

  9. Li, H., Hartley, R.: A non-iterative method for correcting lens distortion from nine point correspondences. In: OMNIVIS 2005 (2005)

    Google Scholar 

  10. Stein, G.P.: Lens distortion calibration using point correspondences. In: CVPR, pp. 602–608 (1997)

    Google Scholar 

  11. Kukelova, Z., Pajdla, T.: A minimal solution to the autocalibration of radial distortion. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  12. Kukelova, Z., Pajdla, T.: A minimal solution to radial distortion autocalibration. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2410–2422 (2011)

    Article  Google Scholar 

  13. Kukelova, Z., Byröd, M., Josephson, K., Pajdla, T., Åström, K.: Fast and robust numerical solutions to minimal problems for cameras with radial distortion. Comput. Vis. Image Underst. 114, 234–244 (2010)

    Article  Google Scholar 

  14. Kuang, Y., Solem, J.E., Kahl, F., Åström, K.: Minimal solvers for relative pose with a single unknown radial distortion. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  16. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  17. Byröd, M., Josephson, K., Åström, K.: Fast and stable polynomial equation solving and its application to computer vision. Int. J. Comput. Vis. 84, 237–255 (2009)

    Article  Google Scholar 

  18. Kukelova, Z., Pajdla, T.: Two minimal problems for cameras with radial distortion. In: OMNIVIS (2007)

    Google Scholar 

  19. Josephson, K., Byröd, M.: Pose estimation with radial distortion and unknown focal length. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, San Fransisco, USA (2009)

    Google Scholar 

  20. Kukelova, Z., Bujnak, M., Pajdla, T.: Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In: IEEE International Conference on Computer Vision, ICCV 2013, Sydney, Australia, pp. 2816–2823, 1–8 December 2013 (2013)

    Google Scholar 

  21. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)

    Book  MATH  Google Scholar 

  23. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New York (2007)

    Book  MATH  Google Scholar 

  24. Grayson, D., Stillman, M.: Macaulay 2 (1993–2002). http://www.math.uiuc.edu/Macaulay2/ (An open source computer algebra software)

  25. Kuang, Y., Åström, K.: Numerically Stable Optimization of Polynomial Solvers for Minimal Problems. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 100–113. Springer, Heidelberg (2012)

    Google Scholar 

  26. Naroditsky, O., Daniilidis, K.: Optimizing polynomial solvers for minimal geometry problems. In: ICCV, pp. 975–982 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyuan Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, F., Kuang, Y., Solem, J.E., Åström, K. (2015). A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics