Skip to main content

Singly-Bordered Block-Diagonal Form for Minimal Problem Solvers

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Included in the following conference series:

  • 2709 Accesses

Abstract

The Gröbner basis method for solving systems of polynomial equations became very popular in the computer vision community as it helps to find fast and numerically stable solutions to difficult problems. In this paper, we present a method that potentially significantly speeds up Gröbner basis solvers. We show that the elimination template matrices used in these solvers are usually quite sparse and that by permuting the rows and columns they can be transformed into matrices with nice block-diagonal structure known as the singly-bordered block-diagonal (SBBD) form. The diagonal blocks of the SBBD matrices constitute independent subproblems and can therefore be solved, i.e. eliminated or factored, independently. The computational time can be further reduced on a parallel computer by distributing these blocks to different processors for parallel computation. The speedup is visible also for serial processing since we perform \(O(n^3)\) Gauss-Jordan eliminations on smaller (usually two, approximately \({n \over 2} \times {n \over 2}\) and one \({n \over 3} \times {n \over 3}\)) matrices. We propose to compute the SBBD form of the elimination template in the preprocessing offline phase using hypergraph partitioning. The final online Gröbner basis solver works directly with the permuted block-diagonal matrices and can be efficiently parallelized. We demonstrate the usefulness of the presented method by speeding up solvers of several important minimal computer vision problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aykanat, C., Pinar, A., Catalyurek, U.V.: Permuting sparse rectangular matrices into block-diagonal form. SIAM J. Scientific Comput. 12/2002 (2002)

    Google Scholar 

  2. Bujnak, M., Kukelova, Z., Pajdla, T.: A general solution to the P4P problem for camera with unknown focal length. In: CVPR (2008)

    Google Scholar 

  3. Bujnak, M., Kukelova, Z., Pajdla, T.: New efficient solution to the absolute pose problem for camera with unknown focal length and radial distortion. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 11–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Bujnak, M., Kukelova, Z., Pajdla, T.: Making minimal solvers fast. In: CVPR (2008)

    Google Scholar 

  5. Byröd, M., Josephson, K., Åström, K.: Improving numerical accuracy of Gröbner basis polynomial equation solver. In: ICCV (2007)

    Google Scholar 

  6. Byröd, M., Josephson, K., Åström, K.: A column-pivoting based strategy for monomial ordering in numerical Gröbner basis calculations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 130–143. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Byröd, M., Brown, M., Åström, K.: Minimal solutions for panoramic stitching with radial distortion. In: BMVC (2009)

    Google Scholar 

  8. Byröd, M.: Numerical methods for geometric vision: From minimal to large scale problems. Ph.D. Thesis, Centre for Mathematical Sciences, Lund University (2010)

    Google Scholar 

  9. Catalyurek, U.V., Aykanat, C.: PaToH: Partitioning Tool for Hypergraphs, Version 3.1 (2011)

    Google Scholar 

  10. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, vol. 185, 2nd edn. Springer, Berlin, Heidelberg, New York (2005)

    MATH  Google Scholar 

  11. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th ACM/IEEE Design Automation Conference (1982)

    Google Scholar 

  12. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  13. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hook, D., McAree, P.: Using sturm sequences to bracket real roots of polynomial equations. In: Graphic Gems I, pp. 416–423. Academic Press (1990)

    Google Scholar 

  15. Josephson, K., Byröd, M.: Pose estimation with radial distortion and unknown focal length. In: CVPR 2009 (2009)

    Google Scholar 

  16. http://cmp.felk.cvut.cz/minimal/

  17. Kuehnle, K., Mayr, E.: Exponential space computation of Groebner bases. In: Proceedings of ISSAC. ACM (1996)

    Google Scholar 

  18. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Kukelova, Z., Byröd, M., Josephson, K., Pajdla, T., Åström, K.: Fast and robust numerical solutions to minimal problems for cameras with radial distortion. Comput. Vis. Image Underst. 114(2), 234–244 (2010)

    Article  Google Scholar 

  20. Kushal, A., Agarwal, S.: Visibility based preconditioning for bundle adjustment. In: CVPR 2012

    Google Scholar 

  21. Naroditsky, O., Daniilidis, K.: Optimizing polynomial solvers for minimal geometry problems. In: ICCV 2011

    Google Scholar 

  22. Nister, D.: An efficient solution to the five-point relative pose. IEEE PAMI 26(6), 756–770 (2004)

    Article  Google Scholar 

  23. Stetter, H.J.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  24. Stewenius, H., Nister, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: CVPR 2005

    Google Scholar 

  25. Stewenius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation. ISPRS J. Photogrammetry Remote Sens. 60, 284–294 (2006)

    Article  Google Scholar 

  26. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Acknowledgement

This work has been supported by the EC under project PRoViDE FP7-SPACE-2012-312377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Kukelova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kukelova, Z., Bujnak, M., Heller, J., Pajdla, T. (2015). Singly-Bordered Block-Diagonal Form for Minimal Problem Solvers. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics