Skip to main content

Representation Learning with Smooth Autoencoder

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Included in the following conference series:

Abstract

In this paper, we propose a novel autoencoder variant, smooth autoencoder (SmAE), to learn robust and discriminative feature representations. Different from conventional autoencoders which reconstruct each sample from its encoding, we use the encoding of each sample to reconstruct its local neighbors. In this way, the learned representations are consistent among local neighbors and robust to small variations of the inputs. When trained with supervisory information, our approach forces samples from the same class to become more compact in the vicinity of data manifolds in the new representation space, where the samples are easier to be discriminated. Experimental results verify the effectiveness of the representations learned by our approach in image classification and face recognition tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  2. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 221–231 (2013)

    Article  Google Scholar 

  3. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual tracking. In: NIPS (2013)

    Google Scholar 

  4. Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q.V., Ng, A.Y.: On optimization methods for deep learning. In: ICML (2011)

    Google Scholar 

  5. Ranzato, M., Boureau, Y.L., LeCun, Y.: Sparse feature learning for deep belief networks. In: NIPS (2007)

    Google Scholar 

  6. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: NIPS (2012)

    Google Scholar 

  7. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: ICML (2008)

    Google Scholar 

  8. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: ICML (2011)

    Google Scholar 

  10. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  11. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  12. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  13. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  14. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: NIPS (2009)

    Google Scholar 

  15. Balasubramanian, K., Yu, K., Lebanon, G.: Smooth sparse coding via marginal regression for learning sparse representations. In: ICML (2013)

    Google Scholar 

  16. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised embedding. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 639–655. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length, and helmholtz free energy. In: NIPS (1994)

    Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  19. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation of deep architectures on problems with many factors of variation. In: ICML (2007)

    Google Scholar 

  20. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23, 643–660 (2001)

    Article  Google Scholar 

  21. Martinez, A.M.: The ar face database. Technical report 24 (1998)

    Google Scholar 

  22. Aharon, M., Elad, M., Bruckstein, A.: K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  23. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  24. Jiang, Z., Lin, Z., Davis, L.S.: Learning a discriminative dictionary for sparse coding via label consistent k-svd. In: CVPR (2011)

    Google Scholar 

  25. Guo, H., Jiang, Z., Davis, L.S.: Discriminative dictionary learning with pairwise constraints. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 328–342. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Wang, Z., Yang, J., Nasrabadi, N., Huang, T.: A max-margin perspective on sparse representation-based classification. In: CVPR (2013)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the National Natural Science Foundation of China under contract No. 61390515, 61272319, and 61202297 and Natural Science Foundation of Fujian Province under contract No.2013J01239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liang, K., Chang, H., Cui, Z., Shan, S., Chen, X. (2015). Representation Learning with Smooth Autoencoder. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics