Skip to main content

A Novel Face Spoofing Detection Method Based on Gaze Estimation

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

  • 2735 Accesses

Abstract

Since gaze is a kind of behavioral biometrics which is difficult to be detected by the surveillance due to the ambiguity of visual attention process, it can be used as a clue for anti-spoofing. This work provides the first investigation in research literature on the use of gaze estimation for face spoofing detection. Firstly, a gaze estimation model mapping the gaze feature to gaze position is established for tracking user’s gaze trajectory. Secondly, gaze histogram is obtained by quantifying and encoding the gaze trajectory. Finally, information entropy on gaze histogram suggests the uncertainty level of user’s gaze movement and estimates the liveness of the user. Our basic assumption is that the gaze trajectory of genuine access has higher uncertainty level than that of attack. Therefore, the greater the entropy, the more probable the user is genuine. Experimental results show that the proposed method obtains competitive performance in distinguishing attacks from genuine access.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kollreider, K., Fronthaler, H., Bigun, J.: Non-intrusive liveness detection by face images. Image Vis. Comput. 27, 223–244 (2009)

    Article  Google Scholar 

  2. Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition based on optical flow field. In: Proceedings of the International Conference on Image Analysis and Signal Processing, pp. 233–236 (2009)

    Google Scholar 

  3. Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: Proceedings of IJCB, pp. 1–7 (2011)

    Google Scholar 

  4. Anjos, A., Mohan, M., Marcel, S.: Motion-based counter-measures to photo attacks in face recognition. Inst. Eng. Technol. J. Biometrics 3, 147–158 (2014)

    Google Scholar 

  5. Pan, G., Sun, L., Wu, Z., Wang, Y.: Monocular camera-based face liveness detection by combining eyeblink and scene context. J. Telecommun. Syst. 47, 215–225 (2011)

    Article  Google Scholar 

  6. Jukka, M.P., Hadid, A., Pietikinen, M.: Face spoofing detection from single images using micro-texture analysis. In: Proceedings of IJCB, pp. 1–7 (2011)

    Google Scholar 

  7. Maatta, J., Hadid, A., Pietikainen, M.: Face spoofing detection from single images using texture and local shape analysis. IET Biometrics 1, 3–10 (2012)

    Article  Google Scholar 

  8. Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Komulainen, J., Hadid, A., Pietikäinen, M.: Face spoofing detection using dynamic texture. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part I. LNCS, vol. 7728, pp. 146–157. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Yan, J.J., Zhang, Z.W., Lei, Z., Yi, D., Li, S.Z.: Face liveness detection by exploring multiple scenic clues. In: Proceedings of the International Conference on Control Automation Robotics and Vision, pp. 188–193 (2012)

    Google Scholar 

  11. Komulainen, J., Hadid, A., Pietikainen, M., Anjos, A., Marcel, S.: Complementary countermeasures for detecting scenic face spoofing attacks. In: Proceedings of ICB, pp. 1–7 (2013)

    Google Scholar 

  12. Frischholz, R.W., Dieckmann, U.: Bioid: a multimodal biometric identification system. Computer 33, 64–68 (2000)

    Article  Google Scholar 

  13. Eveno, N., Besacier, L.: Co-inertia analysis for “liveness” test in audio-visual biometrics. In: Proceedings of the International Symposium on Image and Signal Processing and Analysis, pp. 257–261 (2005)

    Google Scholar 

  14. Chetty, G., Wagner, M.: Liveness verification in audio–video speaker authentication. In: Proceedings of the Australian International Conference on Speech Science and Technology, pp. 363–385 (2004)

    Google Scholar 

  15. Pavlidis, I., Symosek, P.: The imaging issue in an automatic face/disguise detection system. In: Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications, pp. 15–24 (2000)

    Google Scholar 

  16. Zhang, Z.W., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, pp. 436–441 (2011)

    Google Scholar 

  17. Kim, Y., Na, J., Yoon, S., Yi, J.: Masked fake face detection using radiance measurements. J. Opt. Soc. Am. A 24, 760–766 (2009)

    Article  Google Scholar 

  18. Sireesha, M.V., Vijaya, P.A., Chellamma, K.: A survey on gaze estimation techniques. In: Proceedings of the International Conference on VLSI, Communication, Advanced Devices, Signals and Systems and Networking, pp. 353–361 (2013)

    Google Scholar 

  19. Ali, A., Deravi, F., Hoque, S.: Liveness detection using gaze collinearity. In: Proceedings of the International Conference on Emerging Security Technologies, pp. 62–65 (2012)

    Google Scholar 

  20. Ali, A., Deravi, F., Hoque, S.: Directional sensitivity of gaze-collinearity features in liveness detections. In: Proceedings of the International Conference on Emerging Security Technologies, pp. 8–11 (2013)

    Google Scholar 

  21. Ali, A., Deravi, F., Hoque, S.: Spoofing attempt detection using gaze colocation. In: Proceedings of the International Conference on Biometrics Special Interest Group, pp. 1–12 (2013)

    Google Scholar 

  22. Sigut, J.F., Sidha, S.A.: Iris center corneal reflection method for gaze tracking using visible light. IEEE Trans. Biomed. Eng. 58, 411–419 (2011)

    Article  Google Scholar 

  23. Villanueva, A., Cabeza, R.: Evaluation of corneal refraction in a model of a gaze tracking system. IEEE Trans. Biomed. Eng. 55, 2812–2822 (2008)

    Article  Google Scholar 

  24. Williams, O., Blake, A., Cipolla, R.: Sparse and semi-supervised visual mapping with the S3GP. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 230–237 (2006)

    Google Scholar 

  25. Feng, L., Sugano, Y., Takahiro, O., Sato, Y.: Inferring human gaze from appearance via adaptive linear regression. In: Proceedings of ICCV, pp. 153–160 (2011)

    Google Scholar 

  26. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

    Article  Google Scholar 

  27. Ma, W.H., Huang, L., Liu, C.P.: Advanced local binary pattern descriptors for crowd estimation. In: Proceedings of the Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 958–962 (2008)

    Google Scholar 

  28. Chang, C.C., Lin, J.C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011). http://www.csie.ntu.edu.tw/cjlin/libsvm

    Article  Google Scholar 

  29. Zhang, Z.W., Yan, J.J., Liu, S.F., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: Proceedings of the IAPR International Conference on Biometrics, pp. 26–31 (2012)

    Google Scholar 

  30. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: Proceedings of the International Conference on Biometrics Special Interest Group, pp. 1–7 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cai, L., Xiong, C., Huang, L., Liu, C. (2015). A Novel Face Spoofing Detection Method Based on Gaze Estimation. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics