Abstract
Detection of salient object regions is useful for many vision tasks. Recently, a variety of saliency detection models have been proposed. They often behave differently over an individual image, and these saliency detection results often complement each other. To make full use of the advantages of the existing saliency detection methods, in this paper, we propose a salience learning model which combines various saliency detection methods such that the aggregation result outperforms each individual one. In our model, we first obtain several saliency maps by different saliency detection methods. The background regions of each saliency map usually lie in a low-dimensional subspace as most of them tend to have lower salience values, while the object regions that deviating from this subspace can be considered as sparse noises. So, an individual saliency map can be represented as a low rank matrix plus a sparse matrix. We aim at learning a unified sparse matrix that represents the salient regions using these obtained individual saliency maps. The sparse matrix can be inferred by conducting low rank matrix recovery using the robust principal component analysis technique. Experiments show that our model consistently outperforms each individual saliency detection approach and state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ko, B.C., Nam, J.Y.: Object-of-interest image segmentation based on human attention and semantic region clustering. JOptSoc Am. 23, 2462–2470 (2006)
Li, J., Ma, R., Ding, J.: Saliency-seeded region merging: automatic object segmentation. In: ACPR, pp. 691–695 (2011)
Han, J., Ngan, K., Li, M., Zhang, H.: Unsupervised extraction of visual attention objects in color images. IEEE Trans. Circ. Syst. Video. Technol. 16, 141–145 (2006)
Chen, T., Cheng, M., Tan, P., Shamir, A., Hu, S.: Sketch2photo: internet image montage. ACM Trans. Graph. 28, 1–10 (2009)
Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. 26, 1–9 (2007)
Santella, A., Agrawala, M., Decarlo, D., Salesin, D., Cohen, M.: Gaze-based interaction for semi-automatic photo cropping. In: Proceedings of the Conference Human Factors in Computing Systems pp. 771–780 (2006)
Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consum. Elec. 46, 1103–1127 (2002)
Achanta, R., Estrada, F.J., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008)
Achanta, R., Hemami, S.,Estrada, F.J., Susstrunk., S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)
Goferman, S., Zelnik-Manor, L., Tal., A.: Context-aware saliency detection. In: CVPR, pp. 2376–2383 (2010)
Cheng, M., Zhang, G., Mitra, N.J., Huang, X., Hu, S.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2010)
Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 414–429. Springer, Heidelberg (2012)
Mai, L., Niu, Y., Liu, F.: Saliency aggregation: a data-driven approach. In: CVPR, pp. 4321–4328 (2013)
Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR, pp. 853–860 (2012)
Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.: Saliency detection via dense and sparse reconstruction. In: ICCV, pp. 2976–2983 (2013)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp. 1155–116 (2013)
Jiang, B., Zhang, L., Lu, H., Yang, M.: Saliency detection via absorbing markov chain. In: ICCV, pp. 1665–1672 (2013)
Zou, W., Kpalma, K., Liu, Z., Ronsin, J.: Segmentation driven low-rank matrix recovery for saliency detection. In: BMVC, pp. 1–13 (2013)
Margolin, R., Tal, A., Manor, L.: What makes a patch distinct? In: CVPR, pp. 1139–1146 (2013)
Yan, J., Zhu, M., Liu, H., Liu, Y.: Visual saliency detection via sparsity pursuit. IEEE Sig. Process. Lett. 17, 739–742 (2010)
Lang, C., Liu, G., Yu, J., Yan, S.: Saliency detection by multitask sparsity pursuit. IEEE Trans. Image Process. 21, 1327–1338 (2012)
Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: NIPS (2009)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20, 1254–1259 (1998)
Ma, Y., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. In: ACM Multimedia, pp. 374–381 (2003)
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS, pp. 545–552 (2006)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR, pp. 1–8 (2007)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. J. Foo 24, 603–619 (2002)
Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented lagrange multiplier method for extract recovery of corrupted low rank matrices UIUC. Technical report, UILU-ENG-09-2215 (2009)
Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR, pp. 1–8 (2007)
Movahedi, V., Elder, J.: Design and perceptual validation of performance measures for salient object segmentation. In: CVPRW, pp. 49–56 (2010)
Cheng, M., Warrell, J., Lin, W., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV, pp. 1529–1536 (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M. : Saliency detection via graph-based manifold ranking. In: CVPR, pp. 3166–3173 (2013)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)
Rosenfeld, A., Weinshall, D.: Extracting foreground masks towards object recognition. In: ICCV, pp. 1371–1378 (2011)
Zhai, Y., Shah, M.: Visual attentation detection in video sequences using spatiotemporal cues. In: ACM Multimedia, pp. 815–824 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, J., Ding, J., Yang, J. (2015). Visual Salience Learning via Low Rank Matrix Recovery. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-16811-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16810-4
Online ISBN: 978-3-319-16811-1
eBook Packages: Computer ScienceComputer Science (R0)