Skip to main content

Accelerating the Distribution Estimation for the Weighted Median/Mode Filters

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

  • 2436 Accesses

Abstract

Various image filters for applications in the area of computer vision require the properties of the local statistics of the input image, which are always defined by the local distribution or histogram. But the huge expense of computing the distribution hampers the popularity of these filters in real-time or interactive-rate systems. In this paper, we present an efficient and practical method to estimate the local weighted distribution for the weighted median/mode filters based on the kernel density estimation with a new separable kernel defined by a weighted combinations of a series of probabilistic generative models. It reduces the large number of filtering operations in previous constant time algorithms [1, 2] to a small amount, which is also adaptive to the structure of the input image. The proposed accelerated weighted median/mode filters are effective and efficient for a variety of applications, which have comparable performance against the current state-of-the-art counterparts and cost only a fraction of their execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma, Z., He, K., Wei, Y., Sun, J., Wu, E.: Constant time weighted median filtering for stereo matching and beyond. In: Proceedings of the IEEE International Conference Computer Vision (2013)

    Google Scholar 

  2. Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Trans. Graph. 29, 100 (2010)

    Article  Google Scholar 

  3. Perreault, S., Hébert, P.: Median filtering in constant time. IEEE Trans. Image Process. 16, 2389–2394 (2007)

    Article  MathSciNet  Google Scholar 

  4. Cline, D., White, K., Egbert, P.: Fast 8-bit median filtering based on separability. In: Proceedings of the IEEE International Conference Image Processing, vol. 5, pp. V-281–V-284 (2007)

    Google Scholar 

  5. Min, D., Lu, J., Do, M.: Depth video enhancement based on weighted mode filtering. IEEE Trans. Image Process. 21, 1176–1190 (2012)

    Article  MathSciNet  Google Scholar 

  6. Van de Weijer, J., Van den Boomgaard, R.: Local mode filtering. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, vol. 2, pp. II-428–II-433 (2001)

    Google Scholar 

  7. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  9. Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vis. Comput. 22, 73–81 (2004)

    Article  Google Scholar 

  10. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. 26, 96:1–96:10 (2007)

    Google Scholar 

  11. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30, 69:1–69:12 (2011)

    Article  Google Scholar 

  12. Gastal, E.S., Oliveira, M.M.: Adaptive manifolds for real-time high-dimensional filtering. ACM Trans. Graph. 31, 33 (2012)

    Article  Google Scholar 

  13. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 568–580. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. 26 (2007) Article 103

    Google Scholar 

  16. Adams, A., Gelfand, N., Dolson, J., Levoy, M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Trans. Graph. 28, 21:1–21:12 (2009)

    Article  Google Scholar 

  17. Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the permutohedral lattice. Comput. Graph. Forum. 29, 753–762 (2010)

    Article  Google Scholar 

  18. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol. 1. Springer, New York (2006)

    MATH  Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  20. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sheng, L., Ngan, K.N., Hui, TW. (2015). Accelerating the Distribution Estimation for the Weighted Median/Mode Filters. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics