Skip to main content

Robust Sharpness Metrics Using Reorganized DCT Coefficients for Auto-Focus Application

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

  • 2519 Accesses

Abstract

We present two new metrics for measuring sharpness of an image. Both methods exploit a reorganized Discrete Cosine Transform (DCT) representation and analyze the reorganized coefficients to use the most useful components for sharpness measuring. Our first metric utilizes optimal high and middle frequency coefficients for relative sharpness evaluation. It is well suitable for focus measure as it is super sensitive to the best-focus position and could predict stable and accurate focus values for various subjects and scenes with different lighting and noise conditions. Experiments demonstrate that it has high discrimination power even for high noisy and low-contrast images. The second metric constructs energy maps for each scale of reorganized DCT coefficients, and determines absolute sharpness/blurriness using the local maxima energy information. Compared with most existing no-reference sharpness/blurriness metrics, this metric is very efficient in sharpness measurement for images with different contents, and can be used in real-time auto-focus application. Experiments show that it correlates well with perceived sharpness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciancio, A., da Costa, A.L.N.T., da Silva, E.A.B.: No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Trans. Image Process. 20, 64–75 (2011)

    Article  MathSciNet  Google Scholar 

  2. Vu, C.T., Phan, T.D., Chandler, D.M.: S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans. Image Process. 21, 934–945 (2011)

    Article  MathSciNet  Google Scholar 

  3. Santos, A., Solorzano, C.O.D., Vaquero, J.J., Pena, J.M., Malpica, N., Pozo, F.D.: Evaluation of autofocus functions in molecular cytogenetic analysis. J. Microsc. 188, 264–272 (1997)

    Article  Google Scholar 

  4. Yousefi, S., Rahman, M., Kehtarnavaz, N.: A new auto-focus sharpness function for digital and smart-phone cameras. IEEE Trans. Consum. Electron. 57, 1003–1009 (2011)

    Article  Google Scholar 

  5. Choi, J., Kang, H., Lee, C.M., Kang, M.G.: Noise insensitive focus value operator for digital imaging systems. IEEE Trans. Consum. Electron. 56, 312–316 (2010)

    Article  Google Scholar 

  6. Kristan, M., Pers, J., Perse, M., Kovacic, S.: A bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform. Pattern Recogn. Lett. 27, 1431–1439 (2006)

    Article  Google Scholar 

  7. Lee, S.Y., Kumar, Y., Cho, J.M., Lee, S.W., Kim, S.W.: Enhanced autofocus algorithm using robust focus measure and fuzzy reasoning. IEEE Trans. Circ. Syst. Video Technol. 18, 1237–1246 (2008)

    Article  Google Scholar 

  8. Shen, C.H., Chen, H.H.: Robust focus measure for low-contrast images. In: IEEE International Conference on Consumer Electronics (2006)

    Google Scholar 

  9. Jeon, J., Lee, J., Paik, J.: Robust focus measure for unsupervised auto-focusing based on optimum discrete cosine transform coefficients. IEEE Trans. Consum. Electron. 57, 1–5 (2011)

    Article  Google Scholar 

  10. Lee, M.E., Chen, C.F., Lin, T.N., Chen, C.N.: The application of discrete cosine transform combined with the nonlinear regression routine on optical auto-focusing. In: IEEE International Conference on Consumer Electronics (2009)

    Google Scholar 

  11. Marichal, X., Ma, W.Y., Zhang, H.: Blur determination in the compressed domain using dct information. In: IEEE International Conference on Image Processing (1999)

    Google Scholar 

  12. Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur. IEEE Trans. Image Process. 18, 717–728 (2009)

    Article  MathSciNet  Google Scholar 

  13. Shen, J., Li, Q., Erlebacher, G.: Hybrid no-reference natural image quality assessment of noisy, blurry, jpeg2000, and jpeg images. IEEE Trans. Image Process. 20, 2089–2098 (2011)

    Article  MathSciNet  Google Scholar 

  14. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image qaulity assessment database release 2. http://live.ece.utexas.edu/research/quality

  15. Zhang, Y., Zhang, Y., Wen, C.: A new focus measure method using moments. Image Vis. Comput. 18, 959–965 (2000)

    Article  Google Scholar 

  16. Kautsky, J., Flusser, J., Zitova, B., Simberova, S.: A new wavelet-based measure of image focus. Pattern Recogn. Lett. 23, 1785–1794 (2002)

    Article  MATH  Google Scholar 

  17. Yang, G., Nelson, B.J.: Wavelet-based autofocusing and unsupervised segmentation of microscopic images. In: IEEE International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  18. Horn, B.K.P.: Focusing. Technical report, Massachusetts Institute of Technology (1968)

    Google Scholar 

  19. Choi, K.S., Lee, J.S., Ko, S.J.: New autofocusing technique using the frequency selective weighted median filter for video cameras. IEEE Trans. Consum. Electron. 45, 820–827 (1999)

    Article  Google Scholar 

  20. Chen, C.Y., Hwang, R.C., Chen, Y.-J.: A passive auto-focus camera control system. Appl. Soft Comput. 10, 296–303 (2010)

    Article  Google Scholar 

  21. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: IEEE International Conference on Image Processing (2002)

    Google Scholar 

  22. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: Perceptual blur and ringing metrics application to jpeg2000. Sig. Process. Image Commun. 19, 163–172 (2004)

    Article  Google Scholar 

  23. Narvekar, N.D., Karam, L.J.: A no-reference image blur metric based on the cumulative probability of blur detection. IEEE Trans. Image Process. 20, 2678–2683 (2011)

    Article  MathSciNet  Google Scholar 

  24. Sadaka, N.G., Karam, L.J., Ferzli, R., Abousleman, G.P.: A no-reference perceptual image sharpness metric based on saliency-weighted foveal pooling. In: IEEE International Conference on Image Processing (2008)

    Google Scholar 

  25. Wee, C.Y., Paramesran, R.: Image sharpness measure using eigevalues. In: 9th International Conference on Signal Processing (2008)

    Google Scholar 

  26. Caviedes, J., Oberti, F.: A new sharpness metric based on local kurtosis, edge and energy information. Sig. Process. Image Commun. 19, 147–161 (2004)

    Article  Google Scholar 

  27. Tong, H., Li, M., Zhang, H., Zhang, C.: Blur detection for digital images using wavelet transform. In: IEEE International Conference on Multimedia and Expo (2004)

    Google Scholar 

  28. Shaked, D., Tastl, I.: Sharpness measure: towards automatic image enhancement. In: IEEE International Conference on Image Processing (2005)

    Google Scholar 

  29. Balam, S., Schonfeld, D.: Associative processors for video coding applications. IEEE Trans. Circuits Syst. Video Technol. 16, 241–250 (2006)

    Article  Google Scholar 

  30. Huan, J., Parris, M., Lee, J., DeMara, R.F.: Scalable fpga-based architecture for dct computation using dynamic partial reconfiguration. ACM Trans. Embed. Comput. Syst. 9, 1–18 (2009)

    Article  Google Scholar 

  31. Cho, N.I., Lee, S.U.: Fast algorithm and implementation of 2d discrete cosine transform. IEEE Trans. Circ. Syst. 38, 297–305 (1991)

    Article  Google Scholar 

  32. Xiong, Z., Guleryuz, O., Orchard, M.T.: A dct-based embedded image coder. Signal Process. Lett. 3, 289–290 (1996)

    Article  Google Scholar 

  33. Ma, L., Li, S., Zhang, F., Ngan, K.N.: Reduced-reference image quality assessment using reorganized dct-based image representation. IEEE Trans. Multimedia 13, 824–829 (2011)

    Article  Google Scholar 

  34. Zhao, D., Gao, W., Chan, Y.K.: Morphological representation of dct coefficients for image compression. IEEE Trans. Circuits Syst. Video Technol. 12, 819–823 (2002)

    Article  Google Scholar 

  35. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  36. Lam, E.Y., Goodman, J.W.: A mathematical analysis of the dct coefficient distributions for images. IEEE Trans. Image Process. 9, 1661–1666 (2000)

    Article  MATH  Google Scholar 

  37. Robson, J.G., Graham, N.: Probability summation and regional variation in contrast sensitivity across the visual field. Vision. Res. 21, 409–418 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Z., Liu, Y., Tan, X., Zhang, M. (2015). Robust Sharpness Metrics Using Reorganized DCT Coefficients for Auto-Focus Application. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics