Abstract
When the foreground objects have variegated appearance and/or manifest articulated motion, not to mention the momentary occlusions by other unintended objects, a segmentation method based on single video and a bottom-up approach is often insufficient for their extraction. In this paper, we present a video co-segmentation method to address the aforementioned challenges. Departing from the objectness attributes and motion coherence used by traditional figure-ground separation methods, we place central importance in the role of “common fate”, that is, the different parts of the foreground should persist together in all the videos. To accomplish this idea, we first extract seed superpixels by a motion-based figure/ground segmentation method. We then formulate a set of linkage constraints between these superpixels based on whether they exhibit the characteristics of common fate or not. An iterative constrained clustering algorithm is then proposed to trim away the incorrect and accidental linkage relationships. The clustering algorithm also performs automatic model selection to estimate the number of individual objects in the foreground (e.g. male and female birds in courtship), while at the same time binding the parts of a variegated object together in a unified whole. Finally, a multiclass labeling Markov randome field is used to obtain a refined segmentation result. Our experimental results on two datasets show that our method successfully addresses the challenges in the extraction of complex foreground and outperforms the state-of-the-art video segmentation and co-segmentation methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Spelke, E.S.: Principles of object perception. Cogn. Sci. 14, 29–56 (1990)
Wang, M., Ni, B., Hua, X.S., Chua, T.S.: Assistive tagging: a survey of multimedia tagging with human-computer joint exploration. ACM Comput. Surv. 44 (2012)
Fowlkes, C., Martin, D., Malik, J.: On measuring the ecological validity of local figure/ground cues. In: ECVP (2003)
Maire, M.: Simultaneous segmentation and figure/ground organization using angular embedding. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 450–464. Springer, Heidelberg (2010)
Ren, X., Fowlkes, C.C., Malik, J.: Figure/ground assignment in natural images. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 614–627. Springer, Heidelberg (2006)
Stahl, J., Wang, S.: Convex grouping combining boundary and region information. In: ICCV (2005)
Lee, Y., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV (2011)
Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: CVPR (2013)
Sun, D., Wulff, J., Sudderth, E.B., Pfister, H., Black, M.J.: A fully-connected layered model of foreground and background flow. In: CVPR (2013)
Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)
Peterson, M.A.: Low-level and high-level contributions to figure-ground organization. In: Wagemans, J. (ed.) Oxford Handbook of Perceptual Organization. Oxford University Press, Oxford (2014)
Peterson, M., Gibson, B.: Must figure-ground organization precede object recognition? an assumption in peril. Psychol. Sci. 5, 253–259 (1994)
Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: ICCV (2011)
Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR (2010)
Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010)
Chiu, W.C., Fritz, M.: Multi-class video co-segmentation with a generative multi-video model. In: CVPR (2013)
Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live video. In: CVPR (2006)
Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010)
Rother, C., Kolmogorov, V., Minka, T., Blake, A.: Cosegmentation of image pairs by histogram matching incorporating a global constraint into MRFs. In: CVPR (2006)
Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: CVPR (2011)
Fu, H., Xu, D., Zhang, B., Lin, S.: Object-based multiple foreground video co-segmentation. In: CVPR (2014)
Wang, C., Guo, Y., Zhu, J., Wang, L., Wang, W.: Video object co-segmentation via subspace clustering and quadratic pseudo-boolean optimization in an MRF framework. IEEE Trans. Multimedia 23 (2014)
Joulin, A., Bach, F., Ponce, J.: Multi-class cosegmentation. In: CVPR (2012)
Kim, G., Xing, E.P.: On multiple foreground cosegmentation. In: CVPR (2012)
Galasso, F., Cipolla, R., Schiele, B.: Video segmentation with superpixels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 760–774. Springer, Heidelberg (2013)
Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV (2013)
Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: ICCV (2009)
Lu, Z., Ip, H.H.S.: Constrained spectral clustering via exhaustive and efficient constraint propagation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 1–14. Springer, Heidelberg (2010)
Li, Z., Cheong, L.F., Zhou, S.Z.: SCAMS: simultaneous clustering and model selection. In: CVPR (2014)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. TPAMI 23, 1222–1239 (2001)
Cheng, H.T., Ahuja, N.: Exploiting nonlocal spatiotemporal structure for video segmentation. In: CVPR (2012)
Acknowledgement
This work was partially supported by the Singapore PSF grant 1321202075 and the grant from the National University of Singapore (Suzhou) Research Institute (R-2012-N-002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Guo, J., Cheong, LF., Tan, R.T., Zhou, S.Z. (2015). Consistent Foreground Co-segmentation. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-16817-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16816-6
Online ISBN: 978-3-319-16817-3
eBook Packages: Computer ScienceComputer Science (R0)