Skip to main content

Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

  • 2548 Accesses

Abstract

We frame the task of predicting a semantic labeling as a sparse reconstruction procedure that applies a target-specific learned transfer function to a generic deep sparse code representation of an image. This strategy partitions training into two distinct stages. First, in an unsupervised manner, we learn a set of dictionaries optimized for sparse coding of image patches. These generic dictionaries minimize error with respect to representing image appearance and are independent of any particular target task. We train a multilayer representation via recursive sparse dictionary learning on pooled codes output by earlier layers. Second, we encode all training images with the generic dictionaries and learn a transfer function that optimizes reconstruction of patches extracted from annotated ground-truth given the sparse codes of their corresponding image patches. At test time, we encode a novel image using the generic dictionaries and then reconstruct using the transfer function. The output reconstruction is a semantic labeling of the test image.

Applying this strategy to the task of contour detection, we demonstrate performance competitive with state-of-the-art systems. Unlike almost all prior work, our approach obviates the need for any form of hand-designed features or filters. Our model is entirely learned from image and ground-truth patches, with only patch sizes, dictionary sizes and sparsity levels, and depth of the network as chosen parameters. To illustrate the general applicability of our approach, we also show initial results on the task of semantic part labeling of human faces.

The effectiveness of our data-driven approach opens new avenues for research on deep sparse representations. Our classifiers utilize this representation in a novel manner. Rather than acting on nodes in the deepest layer, they attach to nodes along a slice through multiple layers of the network in order to make predictions about local patches. Our flexible combination of a generatively learned sparse representation with discriminatively trained transfer classifiers extends the notion of sparse reconstruction to encompass arbitrary semantic labeling tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le, Q.V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G.S., Dean, J., Ng, A.Y.: Building high-level features using large scale unsupervised learning. In: ICML (2012)

    Google Scholar 

  2. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: ISCAS (2010)

    Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  4. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: ICCV (2011)

    Google Scholar 

  5. Yu, K., Lin, Y., Lafferty, J.: Learning image representations from the pixel level via hierarchical sparse coding. In: CVPR (2011)

    Google Scholar 

  6. Bo, L., Ren, X., Fox, D.: Multipath sparse coding using hierarchical matching pursuit. In: CVPR (2013)

    Google Scholar 

  7. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  9. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  10. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Asilomar Conference on Signals, Systems and Computers (1993)

    Google Scholar 

  11. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit (2008)

    Google Scholar 

  12. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  13. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2007)

    Google Scholar 

  14. Kae, A., Sohn, K., Lee, H., Learned-Miller, E.: Augmenting CRFs with Boltzmann machine shape priors for image labeling. In: CVPR (2013)

    Google Scholar 

  15. Ren, X., Bo, L.: Discriminatively trained sparse code gradients for contour detection. In: NIPS (2012)

    Google Scholar 

  16. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)

    Google Scholar 

  17. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color and texture cues. PAMI 26(5), 530–54 (2004)

    Article  Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  19. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. IJCV 43(1), 7–27 (2001)

    Article  MATH  Google Scholar 

  20. Ren, X., Fowlkes, C.C., Malik, J.: Figure/ground assignment in natural images. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 614–627. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Lim, J., Zitnick, C.L., Dollár, P.: Sketch tokens: a learned mid-level representation for contour and object detection. In: CVPR (2013)

    Google Scholar 

  22. Mairal, J., Leordeanu, M., Bach, F., Hebert, M., Ponce, J.: Discriminative sparse image models for class-specific edge detection and image interpretation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 43–56. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Yang, J., Wang, Z., Lin, Z., Shu, X., Huang, T.: Bilevel sparse coding for coupled feature spaces. In: CVPR (2012)

    Google Scholar 

  24. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  25. Maire, M., Yu, S.X., Perona, P.: Progressive multigrid eigensolvers for multiscale spectral segmentation. In: ICCV (2013)

    Google Scholar 

  26. Arbeláez, P.: Boundary extraction in natural images using ultrametric contour maps. In: POCV (2006)

    Google Scholar 

  27. Canny, J.: A computational approach to edge detection. PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

ARO/JPL-NASA Stennis NAS7.03001 supported Michael Maire’s work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Maire, M., Yu, S.X., Perona, P. (2015). Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics