Skip to main content

Saliency Aggregation: Does Unity Make Strength?

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

Abstract

In this study, we investigate whether the aggregation of saliency maps allows to outperform the best saliency models. This paper discusses various aggregation methods; six unsupervised and four supervised learning methods are tested on two existing eye fixation datasets. Results show that a simple average of the TOP 2 saliency maps significantly outperforms the best saliency models. Considering more saliency models tends to decrease the performance, even when robust aggregation methods are used. Concerning the supervised learning methods, we provide evidence that it is possible to further increase the performance, under the condition that an image similar to the input image can be found in the training dataset. Our results might have an impact for critical applications which require robust and relevant saliency maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiol. 4, 219–227 (1985)

    Google Scholar 

  2. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 185–207 (2013)

    Article  Google Scholar 

  3. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Proceedings of Neural Information Processing Systems (NIPS) (2006)

    Google Scholar 

  4. Le Meur, O., Le Callet, P., Barba, D., Thoreau, D.: A coherent computational approach to model the bottom-up visual attention. IEEE Trans. PAMI 28, 802–817 (2006)

    Article  Google Scholar 

  5. Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Saliency from hierarchical adaptation through decorrelation and variance normalization. Image Vis. Comput. 30, 51–64 (2012)

    Article  Google Scholar 

  6. Itti, L., Koch, C., Niebur, E.: A model for saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1254–1259 (1998)

    Article  Google Scholar 

  7. Bruce, N., Tsotsos, J.: Saliency, attention and visual search: an information theoretic approach. J. Vis. 9, 1–24 (2009)

    Article  Google Scholar 

  8. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: CVPR (2007)

    Google Scholar 

  9. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: A benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 414–429. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Mai, L., Niu, Y., Feng, L.: Saliency aggregation: a data-driven approach. In: CVPR (2013)

    Google Scholar 

  11. Liu, Z., Zou, W., Le Meur, O.: Saliency tree: A novel saliency detection framework. IEEE Trans. Image Process. 23, 1937–1952 (2014)

    Article  MathSciNet  Google Scholar 

  12. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where people look. In: ICCV (2009)

    Google Scholar 

  13. Riche, N., Mancas, M., Duvinage, M., Mibulumukini, M., Gosselin, B., Dutoit, T.: Rare 2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis. Sig. Process. Image Commun. 28, 642–658 (2013)

    Article  Google Scholar 

  14. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. PAMI 26, 1124–1137 (2004)

    Article  Google Scholar 

  15. Le Meur, O., Baccino, T.: Methods for comparing scanpaths and saliency maps: strengths and weaknesses. Behav. Res. Method 1, 1–16 (2012)

    Google Scholar 

  16. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 5500, 2323–2326 (2000)

    Article  Google Scholar 

  17. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing System, (NIPS) (2000)

    Google Scholar 

  18. Huber, P.: Robust regression: Asymptotics, conjectures and monte carlo. Ann. Stat. 1, 799–821 (1973)

    Article  MATH  Google Scholar 

  19. Peters, R.J., Iyer, A., Itti, L., Koch, C.: Components of bottom-up gaze allocation in natural images. Vis. Res. 45, 2397–2416 (2005)

    Article  Google Scholar 

  20. Borji, A., Sihite, D.N., Itti, L.: Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. IEEE Trans. Image Process. 22, 55–69 (2012)

    Article  MathSciNet  Google Scholar 

  21. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1704–1716 (2012)

    Article  Google Scholar 

  22. Yubing, T., Cheikh, F., Guraya, F., Konik, H., Trémeau, A.: A spatiotemporal saliency model for video surveillance. Cogn. Comput. 3, 241–263 (2011)

    Article  Google Scholar 

  23. Liu, Z., Zhang, X., Luo, S., Le Meur, O.: Superpixel-based spatiotemporal saliency detection. IEEE Trans. Circuits Syst. Video Technol. 24, 1522–1540 (2014)

    Article  Google Scholar 

  24. Mamede, S., Splinter, T., van Gog, T., Rikers, R.M.J.P., Schmidt, H.: Exploring the role of salient distracting clinical features in the emergence of diagnostic errors and the mechanisms through which reflection counteracts mistakes. BMJ Qual. Saf. 21, 295–300 (2012)

    Article  Google Scholar 

  25. Won, W.J., Lee, M., Son, J.W.: Implementation of road traffic signs detection based on saliency map model. In: Intelligent Vehicles Symposium, pp. 542–547 (2008)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme under Grant No. 299202 and No. 911202, and in part by the National Natural Science Foundation of China under Grant No. 61171144. We thank Dr. Wanlei Zhao for his technical assistance for computing the VLAD scores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Le Meur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Le Meur, O., Liu, Z. (2015). Saliency Aggregation: Does Unity Make Strength?. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics