Skip to main content

Spectral Graph Skeletons for 3D Action Recognition

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

Abstract

We present spectral graph skeletons (SGS), a novel graph-based method for action recognition from depth cameras. The contribution of this paper is to leverage a spectral graph wavelet transform (SGWT) for creating an overcomplete representation of an action signal lying on a 3D skeleton graph. The resulting SGS descriptor is efficiently computable in time linear in the action sequence length. We investigate the suitability of our method by experiments on three publicly available datasets, resulting in performance comparable to state-of-the-art action recognition approaches. Namely, our method achieves \(91.4\)% accuracy on the challenging MSRAction3D dataset in the cross-subject setting. SGS also achieves \(96.0\,\%\) and \(98.8\,\%\) accuracy on the MSRActionPairs3D and UCF-Kinect datasets, respectively. While this study focuses on action recognition, the proposed framework can in general be applied to any time series of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Online source code available at http://wiki.epfl.ch/sgwt.

  2. 2.

    In stratified cross-validation, the folds are selected so that the percentage of samples for each class in the dataset is preserved in each fold.

References

  1. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recogn. 44, 1057–1067 (2011)

    Article  MATH  Google Scholar 

  2. Bunke, H., Riesen, K.: Towards the unification of structural and statistical pattern recognition. Pattern Recogn. Lett. 33, 811–825 (2012)

    Article  Google Scholar 

  3. Chen, S., Cerda, F., Rizzo, P., Bielak, J., Garrett, J., Kovacevic, J.: Semi-supervised multiresolution classification using adaptive graph filtering with application to indirect bridge structural health monitoring. IEEE Trans. Signal Proc. 62, 2879–2893 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chung, F.R.: Spectral graph theory. CBMS Regional Conference Seriesin Mathematics, vol. 92, American Mathematical Society (1997)

    Google Scholar 

  5. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmonic Anal. 21, 53–94 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crovella, M., Kolaczyk, E.: Graph wavelets for spatial traffic analysis. In: INFOCOM (2003)

    Google Scholar 

  7. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30, 83–98 (2013)

    Article  Google Scholar 

  8. Dong, X., Ortega, A., Frossard, P., Vandergheynst, P.: Inference of mobility patterns via spectral graph wavelets. In: ICASSP (2013)

    Google Scholar 

  9. Egilmez, H.E., Ortega, A.: Spectral anomaly detection using graph-based filtering for wireless sensor networks. In: ICASSP (2014)

    Google Scholar 

  10. Ellis, C., Masood, S.Z., Tappen, M.F., Laviola Jr., J.J., Sukthankar, R.: Exploring the trade-off between accuracy and observational latency in action recognition. Int. J. Comput. Vis. 101, 420–436 (2013)

    Article  Google Scholar 

  11. Gowayyed, M.A., Torki, M., Hussein, M.E., El-Saban, M.: Histogram of oriented displacements (hod): describing trajectories of human joints for action recognition. In: IJCAI (2013)

    Google Scholar 

  12. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmonic Anal. 30, 129–150 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with Microsoft Kinect sensor: A review. IEEE Trans. Cybern. 43, 1318–1334 (2013)

    Article  Google Scholar 

  14. Hermansson, L., Kerola, T., Johansson, F., Jethava, V., Dubhashi, D.: Entity disambiguation in anonymized graphs using graph kernels. In: CIKM. ACM (2013)

    Google Scholar 

  15. Kim, W.S., Narang, S.K., Ortega, A.: Graph based transforms for depth video coding. In: ICASSP (2012)

    Google Scholar 

  16. Leonardi, N., Van De Ville, D.: Wavelet frames on graphs defined by fmri functional connectivity. In: ISBI (2011)

    Google Scholar 

  17. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d points. In: CVPR Workshops (2010)

    Google Scholar 

  18. Luo, J., Wang, W., Qi, H.: Group sparsity and geometry constrained dictionary learning for action recognition from depth maps. In: ICCV (2013)

    Google Scholar 

  19. Narang, S.K., Chao, Y.H., Ortega, A.: Graph-wavelet filterbanks for edge-aware image processing. In: Statistical Signal Processing Workshop (SSP). IEEE (2012)

    Google Scholar 

  20. Narang, S.K., Ortega, A.: Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE Trans. Signal Process. 60, 2786–2799 (2012)

    Article  MathSciNet  Google Scholar 

  21. Oreifej, O., Liu, Z., Redmond, W.: Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. In: CVPR (2013)

    Google Scholar 

  22. Ram, I., Elad, M., Cohen, I.: Generalized tree-based wavelet transform. IEEE Trans. Signal Process. 59, 4199–4209 (2011)

    Article  MathSciNet  Google Scholar 

  23. Sandryhaila, A., Moura, J.M.F.: Nearest-neighbor image model. In: ICIP (2012)

    Google Scholar 

  24. Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs. IEEE Trans. Signal Process. 61, 1644–1656 (2013)

    Article  MathSciNet  Google Scholar 

  25. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56, 116–124 (2013)

    Article  Google Scholar 

  26. Shuman, D.I., Vandergheynst, P., Frossard, P.: Chebyshev polynomial approximation for distributed signal processing. In: DCOSS (2011)

    Google Scholar 

  27. Thanou, D., Shuman, D.I., Frossard, P.: Parametric dictionary learning for graph signals. In: IEEE GlobalSIP (2013)

    Google Scholar 

  28. Vieira, A.W., Nascimento, E.R., Oliveira, G.L., Liu, Z., Campos, M.F.M.: STOP: Space-Time Occupancy Patterns for 3D Action Recognition from Depth Map Sequences. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 252–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: CVPR (2012)

    Google Scholar 

  30. Wang, J., Wu, Y.: Learning maximum margin temporal warping for action recognition. In: ICCV (2013)

    Google Scholar 

  31. Xia, L., Chen, C.C., Aggarwal, J.: View invariant human action recognition using histograms of 3d joints. In: CVPR Workshops (2012)

    Google Scholar 

  32. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)

    Google Scholar 

  33. Yang, X., Tian, Y.: Eigenjoints-based action recognition using naive-bayes-nearest-neighbor. In: CVPR Workshops (2012)

    Google Scholar 

  34. Yang, X., Zhang, C., Tian, Y.: Recognizing actions using depth motion maps-based histograms of oriented gradients. In: ACM MM (2012)

    Google Scholar 

  35. Zanfir, M., Leordeanu, M., Sminchisescu, C.: The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection. In: ICCV (2013)

    Google Scholar 

  36. Zhao, X., Li, X., Pang, C., Zhu, X., Sheng, Q.Z.: Online human gesture recognition from motion data streams. In: ACM MM (2013)

    Google Scholar 

  37. Zhu, X., Rabbat, M.: Approximating signals supported on graphs. In: ICASSP (2012)

    Google Scholar 

  38. Zhu, X., Kandola, J., Lafferty, J., Ghahramani, Z.: Graph kernels by spectral transforms. In: Chapelle, O., Schoelkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 277–291. MIT Press (2006)

    Google Scholar 

Download references

Acknowledgement

The first author acknowledges the Japanese Government (Monbukagakusho:MEXT) scholarship support for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Shinoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kerola, T., Inoue, N., Shinoda, K. (2015). Spectral Graph Skeletons for 3D Action Recognition. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics