Abstract
Training example collection is of great importance for discriminative trackers. Most existing algorithms use a sampling-and-labeling strategy, and treat the training example collection as a task that is independent of classifier learning. However, the examples collected directly by sampling are not intended to be useful for classifier learning. Updating the classifier with these examples might introduce ambiguity to the tracker. In this paper, we introduce an active example selection stage between sampling and labeling, and propose a novel online object tracking algorithm which explicitly couples the objectives of semi-supervised learning and example selection. Our method uses Laplacian Regularized Least Squares (LapRLS) to learn a robust classifier that can sufficiently exploit unlabeled data and preserve the local geometrical structure of feature space. To ensure the high classification confidence of the classifier, we propose an active example selection approach to automatically select the most informative examples for LapRLS. Part of the selected examples that satisfy strict constraints are labeled to enhance the adaptivity of our tracker, which actually provides robust supervisory information to guide semi-supervised learning. With active example selection, we are able to avoid the ambiguity introduced by an independent example collection strategy, and to alleviate the drift problem caused by misaligned examples. Comparison with the state-of-the-art trackers on the comprehensive benchmark demonstrates that our tracking algorithm is more effective and accurate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ross, D., Lim, J., Lin, R., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77, 125–141 (2008)
Kwon, J., Lee, K.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)
Mei, X., Ling, H.: Robust visual tracking using \(\ell 1\) minimization. In: ICCV, pp. 1–8 (2009)
Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: CVPR, pp. 1838–1845 (2012)
Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR, pp. 1822–1829 (2012)
Wang, N., Wang, J., Yeung, D.Y.: Online robust non-negative dictionary learning for visual tracking. In: ICCV, pp. 657–664 (2013)
Wu, Y., Ma, B., Yang, M., Zhang, J., Jia, Y.: Metric learning based structural appearance model for robust visual tracking. IEEE Trans. Circuits Syst. Video Technol. 24, 865–877 (2014)
Wang, D., Lu, H., Yang, M.H.: Least soft-thresold squares tracking. In: CVPR, pp. 2371–2378 (2013)
Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: ICCV, pp. 263–270 (2011)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Li, X., Shen, C., Dick, A.R., van den Hengel, A.: Learning compact binary codes for visual tracking. In: CVPR, pp. 2419–2426 (2013)
Yao, R., Shi, Q., Shen, C., Zhang, Y., van den Hengel, A.: Part-based visual tracking with online latent structural learning. In: CVPR, pp. 2363–2370 (2013)
Bai, Q., Wu, Z., Sclaroff, S., Betke, M., Monnier, C.: Randomized ensemble tracking. In: ICCV, pp. 2040–2047 (2013)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1619–1632 (2011)
Saffari, A., Leistner, C., Godec, M., Bischof, H.: Robust multi-view boosting with priors. In: Saffari, A., Leistner, C., Godec, M., Bischof, H. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 776–789. Springer, Heidelberg (2010)
Bai, Y., Tang, M.: Robust tracking via weakly supervised ranking SVM. In: CVPR, pp. 1854–1861 (2012)
Gao, J., Xing, J., Hu, W., Maybank, S.: Discriminant tracking using tensor representation with semi-supervised improvement. In: ICCV (2013)
Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: bootstrapping binary classifiers by structural constraints. In: CVPR, pp. 49–56 (2010)
Supancic III, J.S., Ramanan, D.: Self-paced learning for long-term tracking. In: CVPR, pp. 2379–2386 (2013)
Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)
Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. J. Artif. Intell. Res. 4, 129–145 (1996)
Atkinson, A.C., Donev, A.N.: Optimum Experimental Designs. Oxford University Press, New York (2002)
Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: parallel robust online simple tracking. In: CVPR, pp. 723–730 (2010)
Yu, K., Bi, J., Tresp, V.: Active learning via transductive experimental design. In: ICML, pp. 1081–1088 (2006)
He, X., Min, W., Cai, D., Zhou, K.: Laplacian optimal design for image retrieval. In: ACM SIGIR, pp. 119–126 (2007)
He, X.: Laplacian regularized d-optimal design for active learning and its application to image retrieval. IEEE Trans. Image Process. 19, 254–263 (2010)
Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS, pp. 1601–1608 (2004)
Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418 (2013)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)
Acknowledgement
This work was supported in part by the Natural Science Foundation of China (NSFC) under grant NO. 61203291, the 973 Program of China under grant NO. 2012CB720000, the Specialized Research Fund for the Doctoral Program of Higher Education of China (20121101120029), and the Specialized Fund for Joint Building Program of Beijing Municipal Education Commission.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, M., Wu, Y., Pei, M., Ma, B., Jia, Y. (2015). Coupling Semi-supervised Learning and Example Selection for Online Object Tracking. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-16817-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16816-6
Online ISBN: 978-3-319-16817-3
eBook Packages: Computer ScienceComputer Science (R0)