Skip to main content

Graph Transduction Learning of Object Proposals for Video Object Segmentation

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

Abstract

We propose an unsupervised video object segmentation algorithm that detects recurring objects and learns cohort object proposals over space-time. Our core contribution is a graph transduction process that learns object proposals densely over space-time, exploiting both appearance models learned from rudimentary detections of sparse object-like regions, and their intrinsic structures. Our approach exploits the fact that rudimentary detections of recurring objects in video, despite appearance variation and sporadity of detection, collectively describe the primary object. By learning a holistic model given a small set of object-like regions, we propagate this prior knowledge of the recurring primary object to the rest of the video to generate a diverse set of object proposals in all frames, incorporating both spatial and temporal cues. This set of rich descriptions underpins a robust object segmentation method against the changes in appearance, shape and occlusion in natural videos.

T. Wang and H. Wang—Indicates equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We used the publicly available source code from: http://vision.cs.utexas.edu/projects/keysegments/code/.

  2. 2.

    We used the publicly available source code from: http://dromston.com/projects/video_object_segmentation.php.

References

  1. Chockalingam, P., Pradeep, S.N., Birchfield, S.: Adaptive fragments-based tracking of non-rigid objects using level sets. In: ICCV, pp. 1530–1537 (2009)

    Google Scholar 

  2. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust video object cutout using localized classifiers. ACM Trans. Graph. 28, 70:1–70:11 (2009)

    Article  Google Scholar 

  3. Price, B.L., Morse, B.S., Cohen, S.: Livecut: Learning-based interactive video segmentation by evaluation of multiple propagated cues. In: ICCV, pp. 779–786 (2009)

    Google Scholar 

  4. Tsai, D., Flagg, M., Nakazawa, A., Rehg, J.M.: Motion coherent tracking using multi-label mrf optimization. Int. J. Comput. Vision 100, 190–202 (2012)

    Article  MathSciNet  Google Scholar 

  5. Wang, T., Collomosse, J.P.: Probabilistic motion diffusion of labeling priors for coherent video segmentation. IEEE Trans. Multimedia 14, 389–400 (2012)

    Article  Google Scholar 

  6. Wang, T., Han, B., Collomosse, J.P.: Touchcut: Fast image and video segmentation using single-touch interaction. Comput. Vis. Image Underst. 120, 14–30 (2014)

    Article  Google Scholar 

  7. Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: ICCV, pp. 1219–1225 (2009)

    Google Scholar 

  8. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV, pp. 1995–2002 (2011)

    Google Scholar 

  10. Ma, T., Latecki, L.J.: Maximum weight cliques with mutex constraints for video object segmentation. In: CVPR, pp. 670–677 (2012)

    Google Scholar 

  11. Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: CVPR, pp. 628–635 (2013)

    Google Scholar 

  12. Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.M.: Video segmentation by tracking many figure-ground segments. In: ICCV (2013)

    Google Scholar 

  13. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Sch, B.: Learning with local and global consistency. In: NIPS, vol. 1 (2004)

    Google Scholar 

  14. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23, 574–583 (2004)

    Article  Google Scholar 

  15. Collomosse, J.P., Rowntree, D., Hall, P.M.: Stroke surfaces: Temporally coherent artistic animations from video. IEEE Trans. Vis. Comput. Graph. 11, 540–549 (2005)

    Article  Google Scholar 

  16. Brendel, W., Todorovic, S.: Video object segmentation by tracking regions. In: ICCV, pp. 833–840 (2009)

    Google Scholar 

  17. Huang, Y., Liu, Q., Metaxas, D.N.: Video object segmentation by hypergraph cut. In: CVPR, pp. 1738–1745 (2009)

    Google Scholar 

  18. Vazquez-Reina, A., Avidan, S., Pfister, H., Miller, E.: Multiple hypothesis video segmentation from superpixel flows. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 268–281. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Grundmann, M., Kwatra, V., Han, M., Essa, I.A.: Efficient hierarchical graph-based video segmentation. In: CVPR, pp. 2141–2148 (2010)

    Google Scholar 

  20. Xu, C., Xiong, C., Corso, J.J.: Streaming hierarchical video segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 626–639. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV (2013)

    Google Scholar 

  22. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  23. Greenspan, H., Goldberger, J., Mayer, A.: A probabilistic framework for spatio-temporal video representation & indexing. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 461–475. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Wang, J., Thiesson, B., Xu, Y., Cohen, M.: Image and video segmentation by anisotropic kernel mean shift. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 238–249. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Jebara, T., Wang, J., Chang, S.F.: Graph construction and b-matching for semi-supervised learning. In: ICML, p. 56 (2009)

    Google Scholar 

  28. Dollar, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)

    Google Scholar 

  29. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  30. VOT2013: The vot2013 challenge dataset (2013). http://www.votchallenge.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinghuai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, T., Wang, H. (2015). Graph Transduction Learning of Object Proposals for Video Object Segmentation. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics