Abstract
Since the 3D structure tensor at each pixel can interpret the local between frames well, it can be used to estimate dense flow. According to the assumptions of brightness constancy, the optical flow estimation can be converted to the calculation the eigenvector of the structure tensor, rather than the complex calculation of linear system. Iterative coarse-to-fine refinement is used to improve the performance. Experimental results show that the proposed algorithm is robust and effective for computing the dense flow.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 16, 185–203 (1981)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J.(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)
Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)
Mémin, E., Pérez, P.: A multigrid approach for hierarchical motion estimation. In: Proc. Sixth International Conference on Computer Vision, pp. 933–938. Narosa Publishing House, Bombay (1998)
Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods 61(3), 211–231 (2005)
Liu, H., Chellappa, R., Rosenfeld, A.: Accurate dense optical flow estimation using adaptive structure tensors and a parametric model. IEEE Trans. IP(12), 1170–1180 (2003)
Wright, J., Pless, R.: Analysis of Persistent Motion Patterns Using the 3D Structure Tensor. In: IEEE Workshop on Motion and Video Computing, pp. 14–19 (2005)
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV (92), 1–31 (2011)
Pless, R., Larson, J., Siebers, S., Westover, B.: Evaluation of Local Models of Dynamic Backgrounds. In: Computer Vision and Pattern Recognnition, pp. 73–78 (2003)
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. IJCV 12, 43–77 (1994)
Tao, M.W., Bai, J., Kohli, P., Paris, S.: SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm. Computer Graphics Forum (Eurographics 2012) 31(2) (May 2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lu, T., Ren, Y., Liu, W., Chen, A. (2015). Dense Optical Flow Estimation with 3D Structure Tensor Models. In: Kim, JH., Yang, W., Jo, J., Sincak, P., Myung, H. (eds) Robot Intelligence Technology and Applications 3. Advances in Intelligent Systems and Computing, vol 345. Springer, Cham. https://doi.org/10.1007/978-3-319-16841-8_62
Download citation
DOI: https://doi.org/10.1007/978-3-319-16841-8_62
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16840-1
Online ISBN: 978-3-319-16841-8
eBook Packages: EngineeringEngineering (R0)