Skip to main content

Reconstruction of Human Motion Trajectories to Support Human Gait Analysis in Free Moving Subjects

  • Chapter
Computational Intelligence, Medicine and Biology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 600))

Abstract

Understanding of human motion is based on analysis of complex motion patterns and requires systematic study of body mechanics. The technologies used to support analysis of human locomotion has advanced dramatically over past decades and were efficiently applied also in many clinical research studies to help clinicians recognize their patients’ motion related health problems. Computerized motion capture systems are used to asses human kinematics in quantitative way. Such systems usually track motion of small either passive or active markers attached to the patients’ bodies and offer highly accurate measurements. However, they can not by used out of the laboratory because of sophisticated equipment or they are to expensive to be widely used. Therefore, there are efforts to derive kinematics directly from video records where no special apparel is needed. In our work, the digital image processing techniques were used to develop algorithms for automatic detection of human motion trajectories. Based on these algorithms, the marker-free analysis system has been created and tested in analysis of human gait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pediaditis, M., Tsiknakis, M., Leitgeb, N.: Vision-based motion detection, analysis and recognition of epileptic seizures A systematic review. Computer Methods and Programs in Biomedicine 108, 1133–1148 (2012)

    Article  Google Scholar 

  2. Porada, V., et al.: Identifikace osob podle dynamického stereotypu chůze, Karlovy Vary, Vysoká škola Karlovy Vary (2010) ISBN 978-80-87236-01-7

    Google Scholar 

  3. Courtney, J., de Paor, A.M.: Monocular Marker-Free Gait Measurement System. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(4), 453–460 (2010)

    Article  Google Scholar 

  4. Penhaker, M., Kasik, V., Snasel, V.: Biomedical distributed signal processing and analysis. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 88–95. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Sholukha, V., Bonnechere, B., Salvia, P., Moiseev, F., Rooze, M., Van Sint Jan, S.: Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems. Journal of Biomechanics 46(14), 2363–2371 (2013)

    Article  Google Scholar 

  6. Macurova, A., Macura, D.: Asymptotic properties of the variables of the roughness surface, Applied Surface Science (2012), DOI: 10.1016/j.apsusc.2012.10.086

    Google Scholar 

  7. Živčák, J., Hudák, R., Tóth, T.: Rat skin wounds tensile strength measurements in the process of healing, SAMI, Article number 6208996, pp. 389-392 (2012)

    Google Scholar 

  8. Majerník, J.: Marker-free Method for Reconstruction of Human Motion Trajectories. Advances in Optoelectronic Materials 1(1), 4–9 (2013)

    Google Scholar 

  9. Han, R., Zhang, F., Wan, X., Fernndez, J., Sun, F., Liu, Z.: A marker-free automatic alignment method based on scale-invariant features. J. of Struct. Biology 186(1), 167–180 (2014)

    Article  Google Scholar 

  10. Ota, S., et al.: A comparison of knee joint biomechanics during free gait and cartilage T2 mapping values in healthy individuals in their twenties and forties. Osteoarthritis and Cartilage 124, S123–S124 (2014)

    Google Scholar 

  11. Zhang, J.: Basic gait analysis based on continuous wave radar. Gait & Posture 36(4), 667–671 (2012)

    Article  Google Scholar 

  12. Penhaker, M., Krejcar, O., Kasik, V., Snášel, V.: Cloud Computing Environments for Biomedical Data Services. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 336–343. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Mihalík, J., Štefanišin, R., Michalčin, V.: Medzisnímkové hybridné kódovanie videosignálov. Nové smery v spracovaní signálov, L, 223–226 (2002) ISBN 8080401802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Majerník .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Majerník, J. (2015). Reconstruction of Human Motion Trajectories to Support Human Gait Analysis in Free Moving Subjects. In: Pancerz, K., Zaitseva, E. (eds) Computational Intelligence, Medicine and Biology. Studies in Computational Intelligence, vol 600. Springer, Cham. https://doi.org/10.1007/978-3-319-16844-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16844-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16843-2

  • Online ISBN: 978-3-319-16844-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics