Abstract
Finding nearest neighbor points in a large scale high dimensional data set is of wide interest in computer vision. One popular and efficient approach is to encode each data point as a binary code in Hamming space using separating hyperplanes. One condition which is often implicitly assumed is that the separating hyperplanes should be mutually orthogonal. With the aim of increasing the representation capability of the hyperplanes when used for indexing, we relax the orthogonality assumption without forsaking the alternate view of using cluster centers to represent the indexing partitions. This is achieved by viewing the data points in a space determined by their distances to the hyperplanes. We show that the proposed method is superior to existing state-of-the-art techniques on several large computer vision datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brown, M., Lowe, D.: Recognising panoramas. In: ICCV, pp. 1218–1225 (2003)
Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance functions for shape-based image retrieval and classification. In: ICCV, pp. 1–8 (2007)
Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: CVPR pp. 1–8 (2008)
Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Proceedings of the 24th VLDB Conference, pp. 194–205 (1998)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 604–613 (1998)
Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 380–388 (2002)
Shen, F., Shen, C., Shi, Q., Hengel, A.V.D., Tang, Z.: Inductive hashing on manifolds. In: CVPR, pp. 1562–1569 (2013)
Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Symposium on Computational Geometry, pp. 252–262 (2004)
Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: NIPS (2009)
Yu, F.X., Sanjiv, K., Gong, Y., Chang, S.F.: Circulant binary embedding. In: ICML (2014)
Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS (2001)
Weiss, Y., Antonio, T., Robert, F.: Spectral hashing. In: NIPS, pp. 1753–1760 (2008)
Jin, Z.M., Hu, Y., Lin, Y., Zhang, D.B., Lin, S.D., Cai, D., Li, X.: Complementary projection hashing. In: ICCV, pp. 257–264 (2013)
Kim, S., Kang, Y., Choi, S.: Sequential spectral learning to hash with multiple representations. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 538–551. Springer, Heidelberg (2012)
Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., Yu, N.: Complementary hashing for approximate nearest neighbor search. In: ICCV, pp. 1631–1638 (2011)
Wang, J., Kumar, S., Chang, S.F.: Sequential projection learning for hashing with compact codes. In: ICML, pp. 1127–1134 (2010)
Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: ICML, pp. 1–8 (2011)
Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 340–353. Springer, Heidelberg (2012)
Wang, J., Liu, W., Sun, A., Jiang, Y.: Learning hash codes with listwise supervision. In: ICCV, pp. 3032–3039 (2013)
Wang, J., Wang, J., Yu, N., Li, S.: Order preserving hashing for approximate nearest neighbor search. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 133–142 (2013)
Norouzi, M., Fleet, D., Salakhutdinov, R.: Hamming distance metric learning. In: NIPS, pp. 1070–1078 (2012)
Norouzi, M., Fleet, D.: Minimal loss hashing for compact binary codes. In: ICML, pp. 353–360 (2011)
Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: NIPS, pp. 1042–1050 (2009)
Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image retrieval. In: CVPR, pp. 3424–3431 (2010)
Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.F.: Supervised hashing with kernels. In: CVPR, pp. 2074–2081 (2012)
Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: CVPR, pp. 817–824 (2011)
Norouzi, M., Fleet, D.: Cartesian k-means. In: CVPR, pp. 3017–3024 (2013)
Norouzi, M., Punjani, A., Fleet, D.: Fast search in hamming space with multi-index hashing. In: CVPR, pp. 3108–3115 (2012)
Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 117–128 (2011)
Jegou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: re-rank with source coding. In: ICASSP, pp. 861–864 (2011)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)
Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vision 14, 316–336 (2010)
Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large database for non-parametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1958–1970 (2008)
Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical report, pp. 1–20 (2007)
Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, pp. 1469–1472 (2008)
He, K., Wen, F., Sun, J.: K-means hashing: an affinity-preserving quantization method for learning binary compact codes. In: CVPR, pp. 2938–2945 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Fu, X., McCane, B., Mills, S., Albert, M. (2015). NOKMeans: Non-Orthogonal K-means Hashing. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-16865-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16864-7
Online ISBN: 978-3-319-16865-4
eBook Packages: Computer ScienceComputer Science (R0)