Skip to main content

Submodular Reranking with Multiple Feature Modalities for Image Retrieval

  • Conference paper
  • First Online:
Computer Vision – ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9003))

Included in the following conference series:

Abstract

We propose a submodular reranking algorithm to boost image retrieval performance based on multiple ranked lists obtained from multiple modalities in an unsupervised manner. We formulate the reranking problem as maximizing a submodular and non-decreasing objective function that consists of an information gain term and a relative ranking consistency term. The information gain term exploits relationships of initially retrieved images based on a random walk model on a graph, then images similar to the query can be found through their neighboring images. The relative ranking consistency term takes relative relationships of initial ranks between retrieved images into account. It captures both images with similar ranks in the initial ranked lists, and images that are similar to the query but highly ranked by only a small number of modalities. Due to its diminishing returns property, the objective function can be efficiently optimized by a greedy algorithm. Experiments show that our submodular reranking algorithm is effective and efficient in reranking images initially retrieved by multiple modalities. Our submodular reranking framework can be easily generalized to any generic reranking problems for real-time search engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please see experiment section about how to compute pairwise similarities.

  2. 2.

    In [10], BoW achieved 77.5 % mAP on Holidays and 3.54 N-S on UKbench, while color achieved 62.6 % and 3.17, respectively. N-S score by GIST is 2.21 on UKbench.

References

  1. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477 (2003)

    Google Scholar 

  2. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with compressed Fisher vectors. In: CVPR, pp. 3384–3391 (2010)

    Google Scholar 

  3. Douze, M., Ramisa, A., Schmid, C.: Combining attributes and fisher vectors for efficient image retrieval. In: CVPR, pp. 745–752 (2011)

    Google Scholar 

  4. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: CVPR, pp. 3304–3311 (2010)

    Google Scholar 

  5. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  6. Chum, O., Mikulík, A., Perdoch, M., Matas, J.: Total recall II: query expansion revisited. In: CVPR, pp. 889–896 (2011)

    Google Scholar 

  7. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  8. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Wang, M., Li, H., Tao, D., Lu, K., Wu, X.: Multimodal graph-based reranking for web image search. IEEE Trans. Image Process. 21, 4649–4661 (2012)

    Article  MathSciNet  Google Scholar 

  10. Zhang, S., Yang, M., Cour, T., Yu, K., Metaxas, D.N.: Query specific fusion for image retrieval. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 660–673. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Deng, C., Ji, R., Liu, W., Tao, D., Gao, X.: Visual reranking through weakly supervised multi-graph learning. In: ICCV, pp. 2600–2607 (2013)

    Google Scholar 

  12. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. Math. Program. 14, 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  13. Arandjelović, R., Zisserman, A.: All about VLAD. In: CVPR, pp. 1578–1585 (2013)

    Google Scholar 

  14. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR, pp. 2911–2918 (2012)

    Google Scholar 

  15. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: CVPR, pp. 2161–2168 (2006)

    Google Scholar 

  16. Wang, X., Yang, M., Cour, T., Zhu, S., Yu, K., Han, T.X.: Contextual weighting for vocabulary tree based image retrieval. In: ICCV, pp. 209–216 (2011)

    Google Scholar 

  17. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  18. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: CVPR, pp. 1169–1176 (2009)

    Google Scholar 

  19. Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 774–787. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Jegelka, S., Bilmes, J.: Submodularity beyond submodular energies: coupling edges in graph cuts. In: CVPR, pp. 1897–1904 (2011)

    Google Scholar 

  21. Kim, G., Xing, E.P., Li, F.F., Kanade, T.: Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: ICCV, pp. 169–176 (2011)

    Google Scholar 

  22. Krause, A., Cevher, V.: Submodular dictionary selection for sparse representation. In: ICML, pp. 567–574 (2010)

    Google Scholar 

  23. Jiang, Z., Zhang, G., Davis, L.S.: Submodular dictionary learning for sparse coding. In: CVPR, pp. 3418–3425 (2012)

    Google Scholar 

  24. Jiang, Z., Davis, L.S.: Submodular salient region detection. In: CVPR, pp. 2043–2050 (2013)

    Google Scholar 

  25. Zhu, F., Jiang, Z., Shao, L.: Submodular object recognition. In: CVPR (2014)

    Google Scholar 

  26. Cao, L., Li, Z., Mu, Y., Chang, S.F.: Submodular video hashing: a unified framework towards video pooling and indexing. In: ACM Multimedia, pp. 299–308 (2012)

    Google Scholar 

  27. Tong, H., He, J., Wen, Z., Konuru, R., Lin, C.Y.: Diversified ranking on large graphs: an optimization viewpoint. In: KDD, pp. 1028–1036 (2011)

    Google Scholar 

  28. Zhu, X., Goldberg, A.B., Gael, J.V., Andrzejewski, D.: Improving diversity in ranking using absorbing random walks. In: HLT-NAACL, pp. 97–104 (2007)

    Google Scholar 

  29. He, J., Tong, H., Mei, Q., Szymanski, B.K.: GenDeR: a generic diversified ranking algorithm. In: NIPS, pp. 1151–1159 (2012)

    Google Scholar 

  30. Krause, A., Guestrin, C.: Near-optimal nonmyopic value of information in graphical models. In: UAI, pp. 324–331 (2005)

    Google Scholar 

  31. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings. ACM Trans. Inf. Syst. 28, 1–38 (2010)

    Article  Google Scholar 

  32. Qin, D., Gammeter, S., Bossard, L., Quack, T., Gool, L.J.V.: Hello neighbor: accurate object retrieval with k-reciprocal nearest neighbors. In: CVPR, pp. 777–784 (2011)

    Google Scholar 

  33. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)

    Article  Google Scholar 

  34. Qin, D., Wengert, C., Gool, L.V.: Query adaptive similarity for large scale object retrieval. In: CVPR (2013)

    Google Scholar 

  35. Shen, X., Lin, Z., Brandt, J., Avidan, S., Wu, Y.: Object retrieval and localization with spatially-constrained similarity measure and k-nn re-ranking. In: CVPR, pp. 3013–3020 (2012)

    Google Scholar 

  36. Aslam, J.A., Montague, M.H.: Models for metasearch. In: SIGIR, pp. 275–284 (2001)

    Google Scholar 

  37. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: WWW, pp. 613–622 (2001)

    Google Scholar 

  38. Kolde, R., Laur, S., Adler, P., Vilo, J.: Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28, 573–580 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the NSF EAGER grant: IIS1359900, Scalable Video Retrieval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (pdf 199 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, F., Jiang, Z., Davis, L.S. (2015). Submodular Reranking with Multiple Feature Modalities for Image Retrieval. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16865-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16864-7

  • Online ISBN: 978-3-319-16865-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics