Skip to main content

Color Photometric Stereo Using a Rainbow Light for Non-Lambertian Multicolored Surfaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9003))

Abstract

This paper presents a novel approach for recovering the shape of non-Lambertian, multicolored objects using two input images. We show that a ring light source with complementary colored lights has the potential to be effectively utilized for this purpose. Under this lighting, the brightness of an object surface varies with respect to different reflections. Therefore, analyzing how brightness is modulated by illumination color gives us distinct cues to recover shape. Moreover, the use of complementary colored illumination enables the color photometric stereo to be applicable to multicolored surfaces. Here, we propose a color correction method based on the addition principle of complementary colors to remove the effect of illumination from the observed color. This allows the inclusion of surfaces with any number of chromaticities. Therefore, our method offers significant advantages over previous methods, which often assume constant object albedo and Lambertian reflectance. To the best of our knowledge, this is the first attempt to employ complementary colors on a ring light source to compute shape while considering both non-Lambertian reflection and spatially varying albedo. To show the efficacy of our method, we present results on synthetic and real world images and compare against photometric stereo methods elsewhere in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This follows Newton’s geometrical weighting [28], which states that the additive mixture of any number of colors is determined as the weighted average of the positions of the original colors on the hue-saturation plane.

  2. 2.

    We note that in practice, \((P_i(\lambda )+\bar{P}_i(\lambda ))\) do not always perfectly sum to 1 at each wavelength. Despite this, since we ultimately examine RGB values in our method and not individual wavelengths, we found the amount of error introduced did not adversely affect our algorithm.

References

  1. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19, 139–144 (1980)

    Article  Google Scholar 

  2. Drew, M., Kontsevich, L.: Closed-form attitude determination under spectrally varying illumination. In: IEEE Conference on Computer Vision and Pattern Recognition (1994)

    Google Scholar 

  3. Kontsevich, L., Petrov, A., Vergelskaya, I.: Reconstruction of shape from shading in color images. J. Opt. Soc. Am. A 11, 1047–1052 (1994)

    Article  Google Scholar 

  4. Woodham, R.J.: Gradient and curvature from photometric stereo including local confidence estimation. J. Opt. Soc. Am. A 11, 3050–3068 (1994)

    Article  Google Scholar 

  5. Brostow, G., Hernández, C., Vogiatzis, G., Stenger, B., Cipolla, R.: Video normals from colored lights. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2104–2114 (2011)

    Article  Google Scholar 

  6. Anderson, R., Stenger, B., Cipolla, R.: Color photometric stereo for multicolored surfaces. In: IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  7. Hernández, C., Vogiatzis, G., Brostow, G.J., Stenger, B., Cipolla, R.: Non-rigid photometric stereo with colored lights. In: IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  8. Decker, B.D., Kautz, J., Mertens, T., Bekaert, P.: Capturing multiple illumination conditions using time and color multiplexing. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  9. Kim, H., Wilburn, B., Ben-Ezra, M.: Photometric stereo for dynamic surface orientations. In: European Conference on Computer Vision (2010)

    Google Scholar 

  10. Janko, Z., Delaunoy, A., Prados, E.: Colour dynamic photometric stereo for textured surfaces. In: Asian Conference on Computer Vision (2010)

    Google Scholar 

  11. Anderson, R., Stenger, B., Cipolla, R.: Augmenting depth camera output using photometric stereo. In: MVA (2011)

    Google Scholar 

  12. Taguchi, Y.: Rainbow flash camera: depth edge extraction using complementary colors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 513–527. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Georghiades, A.: Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo. In: IEEE International Conference on Computer Vision (2003)

    Google Scholar 

  14. Torrance, K., Sparrow, E.: Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. A 57, 1105–1114 (1967)

    Article  Google Scholar 

  15. Goldman, D., Curless, B., Hertzmann, A., Seitz, S.: Shape and spatially-varying BRDFs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1060–1071 (2010)

    Article  Google Scholar 

  16. Ward, G.: Measuring and modeling anisotropic reflection. Comput. Graph. 26, 265–272 (1992)

    Article  Google Scholar 

  17. Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1239–1252 (2003)

    Article  Google Scholar 

  18. Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust photometric stereo via low-rank matrix completion and recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 703–717. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Sato, I., Okabe, T., Yu, Q., Sato, Y.: Shape reconstruction based on similarity in radiance changes under varying illumination. In: IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  20. Okabe, T., Sato, I., Sato, Y.: Attached shadow coding: estimating surface normals from shadows under unknown reflectance and lighting conditions. In: IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  21. Higo, T., Matsushita, Y., Ikeuchi, K.: Consensus photometric stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  22. Alldrin, N., Kriegman, D.: Toward reconstructing surfaces with arbitrary isotropic reflectance: a stratified photometric stereo approach. In: IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  23. Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  24. Tan, P., Quan, L., Zickler, T.: The geometry of reflectance symmetries. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2506–2520 (2011)

    Article  Google Scholar 

  25. Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: Elevation angle from reflectance monotonicity: photometric stereo for general isotropic reflectances. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 455–468. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Hernández, C., Vogiatzis, G., Cipolla, R.: Shadows in three-source photometric stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 290–303. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Zhou, Z., Tan, P.: Ring-light photometric stereo. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 265–279. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. MacEvoy, B.: Color vision (2008). http://www.handprint.com/LS/CVS/color.html

  29. Higo, T., Matsushita, Y., Joshi, N., Ikeuchi, K.: A hand-held photometric stereo camera for 3-d modeling. In: IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  30. Friedman, J., Hastie, T., Hfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1, 302–332 (2007)

    Article  MathSciNet  Google Scholar 

  31. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  32. Frankot, R., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10, 439–451 (1988)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the Ministry of Education, Science, Sports and Culture Grant-in-Aid for Scientific Research on Innovative Areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sejuti Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rahman, S., Lam, A., Sato, I., Robles-Kelly, A. (2015). Color Photometric Stereo Using a Rainbow Light for Non-Lambertian Multicolored Surfaces. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16865-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16864-7

  • Online ISBN: 978-3-319-16865-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics