Skip to main content

Imposing Differential Constraints on Radial Distortion Correction

  • Conference paper
  • First Online:
Computer Vision – ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9003))

Included in the following conference series:

Abstract

Many radial distortion functions have been presented to describe the mappings caused by radial lens distortions in common commercially available cameras. For a given real camera, no matter what function is selected, its innate mapping of radial distortion is smooth, and the signs of its first and second order derivatives are fixed. However, such differential constraints have been never considered explicitly in existing methods of radial distortion correction for a very long time. The differential constraints we claimed in this paper are that for a given real camera, the signs of the first and second order derivatives of the radial distortion function should remain unchanged within the feasible domain of the independent variable, although over the whole domain, or outside of the feasible domain, the signs may change many times. Our method can be somewhat treated as a regularization of the distortion function within the viewing frustum. We relax the differential constraints by using a deliberate strategy, to yield the linear inequality constraints on the unknown coefficients of the radial distortion function. It seems that such additional linear inequalities are not difficult to deal with in recent existing methods of radial distortion correction. The main advantages of our method are not only to ensure the recovered radial distortion function satisfy differential constraints within the viewing frustum, but also to make the recovered radial distortion function working well in case of extrapolation, caused by the features used for distortion correction usually distributed only in the middle part, but rarely near the boundary of the distorted image. The experiments validate our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duane, C.B.: Close-range camera calibration. Photogram. Eng. 37, 855–866 (1971)

    Google Scholar 

  2. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 666–673. IEEE (1999)

    Google Scholar 

  3. Ying, X., Hu, Z.: Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model? In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 442–455. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Barreto, J.P., Daniilidis, K.: Unifying image plane liftings for central catadioptric and dioptric cameras. Proc. OMNIVIS. 1, 151–162 (2004)

    Google Scholar 

  5. Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1335–1340 (2006)

    Article  Google Scholar 

  6. Hartley, R., Kang, S.B.: Parameter-free radial distortion correction with center of distortion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1309–1321 (2007)

    Article  Google Scholar 

  7. Tardif, J.P., Sturm, P., Roy, S.: Plane-based self-calibration of radial distortion. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  8. Tardif, J.P., Sturm, P., Trudeau, M., Roy, S.: Calibration of cameras with radially symmetric distortion. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1552–1566 (2009)

    Article  Google Scholar 

  9. Kukelova, Z., Pajdla, T.: A minimal solution to radial distortion autocalibration. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2410–2422 (2011)

    Article  Google Scholar 

  10. Thirthala, S., Pollefeys, M.: Radial multi-focal tensors. Int. J. Comput. Vis. 96, 195–211 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kukelova, Z., Bujnak, M., Pajdla, T.: Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In: Fifth IEEE International Conference on Computer Vision (2013)

    Google Scholar 

  12. Kanatani, K.: Calibration of ultrawide fisheye lens cameras by eigenvalue minimization. IEEE Trans. Pattern Anal. Mach. Intell. 35, 813–822 (2013)

    Article  Google Scholar 

  13. Stevenson, D., Fleck, M.M.: Nonparametric correction of distortion. In: TR 95–07, Computer Science, University of Iowa, Citeseer (1995)

    Google Scholar 

  14. Basu, A., Licardie, S.: Alternative models for fish-eye lenses. Pattern Recogn. Lett. 16, 433–441 (1995)

    Article  Google Scholar 

  15. Swaminathan, R., Nayar, S.K.: Nonmetric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1172–1178 (2000)

    Article  Google Scholar 

  16. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-125. IEEE (2001)

    Google Scholar 

  17. Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for general cameras. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 213–219. IEEE (2005)

    Google Scholar 

  18. Shah, S., Aggarwal, J.: Intrinsic parameter calibration procedure for a (high-distortion) fish-eye lens camera with distortion model and accuracy estimation. Pattern Recogn. 29, 1775–1788 (1996)

    Article  Google Scholar 

  19. Xiong, Y., Turkowski, K.: Creating image-based vr using a self-calibrating fisheye lens. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 237–243. IEEE (1997)

    Google Scholar 

  20. Nave, T., Francos, J.M.: Global featureless estimation of radial distortions. In: 2nd International Conference on Signal Processing and Communication Systems, ICSPCS 2008, pp. 1–11. IEEE (2008)

    Google Scholar 

  21. Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13, 14–24 (2001)

    Article  Google Scholar 

  22. Tardif, J.-P., Sturm, P., Roy, S.: Self-calibration of a General Radially Symmetric Distortion Model. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 186–199. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Barreto, J.P., Swaminathan, R., Roquette, J.: Non parametric distortion correction in endoscopic medical images. In: 3DTV Conference, 2007, pp. 1–4. IEEE (2007)

    Google Scholar 

  24. Hughes, C., Jones, E., Glavin, M., Denny, P.: Validation of polynomial-based equidistance fish-eye models. In: IET Irish Signals and Systems Conference (ISSC 2009), pp. 1–6. IET (2009)

    Google Scholar 

  25. Fujiki, J., Hino, H., Usami, Y., Akaho, S., Murata, N.: Self-calibration of radially symmetric distortion by model selection. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1812–1815. IEEE (2010)

    Google Scholar 

  26. Thirthala, S., Pollefeys, M.: The radial trifocal tensor: a tool for calibrating the radial distortion of wide-angle cameras. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 321–328. IEEE (2005)

    Google Scholar 

  27. Cornelis, K., Pollefeys, M., Van Gool, K.: Lens distortion recovery for accurate sequential structure and motion recovery. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 186–200. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Gennery, D.B.: Generalized camera calibration including fish-eye lenses. Int. J. Comput. Vis. 68, 239–266 (2006)

    Article  Google Scholar 

  29. Byrod, M., Kukelova, Z., Josephson, K., Pajdla, T., Astrom, K.: Fast and robust numerical solutions to minimal problems for cameras with radial distortion. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  30. Hughes, C., Denny, P., Glavin, M., Jones, E.: Equidistant fish-eye calibration and rectification by vanishing point extraction. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2289–2296 (2010)

    Article  Google Scholar 

  31. Brito, J.H., Angst, R., Koser, K., Pollefeys, M.: Radial distortion self-calibration. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1368–1375. IEEE (2013)

    Google Scholar 

  32. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to minimal problems in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1381–1393 (2012)

    Article  Google Scholar 

  33. Grant, M., Boyd, S., Ye, Y.: Disciplined Convex Programming. Springer, Heidelberg (2006)

    Book  Google Scholar 

  34. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NKBPRC 973 Grant No. 2011CB302202, NNSFC Grant No. 61273283, NNSFC Grant No. 61322309, NNSFC Grant No. 91120004, and NHTRDP 863 Grant No. 2009AA01Z329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghua Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ying, X., Mei, X., Yang, S., Wang, G., Rong, J., Zha, H. (2015). Imposing Differential Constraints on Radial Distortion Correction. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16865-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16864-7

  • Online ISBN: 978-3-319-16865-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics