Skip to main content

Age Estimation Based on Complexity-Aware Features

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9003))

Abstract

The research related to age estimation using face images has become increasingly important. We propose an age estimator using two kinds of local features, the gradient features which well describe the local characteristic, and the Gabor wavelets which reflect the multi-scale directional information. The RealAdaBoost algorithm with a complexity penalty term in the feature selection module is applied to choose meaningful regions from human face for feature extraction, while balancing the discriminative capability and the computation cost at the same time. Furthermore, the hierarchical classifier, which is composed of an age group classification (e.g., 15–39 years old, 40–59 years old etc.) and a detailed age estimation (e.g. 19, 53 years old, etc.) are utilized to get the final age. Experimental results show that the proposed approach outperforms the methods using single feature on PAL and FG-NET database. It also achieves competitive accuracy with the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 504–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Cootes, T.F., Edwards, G.J., Taylor, C.J., et al.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23, 681–685 (2001)

    Article  Google Scholar 

  3. Shan, C.: Learning local features for age estimation on real-life faces. In: Proceedings of the 1st ACM International Workshop on Multimodal Pervasive Video Analysis, pp. 23–28 (2010)

    Google Scholar 

  4. Kwon, Y.H., da Vitoria Lobo, N.: Age classification from facial images. In: Computer Vision and Pattern Recognition, pp. 762–767 (1994)

    Google Scholar 

  5. Hayashi, J., Yasumoto, M., Ito, H., Koshimizu, H.: Method for estimating and modeling age and gender using facial image processing. In: Seventh International Conference on Virtual Systems and Multimedia, pp. 439–448 (2001)

    Google Scholar 

  6. Fukai, H., Takimoto, H., Mitsukura, Y., Fukumi, M.: Apparent age estimation system based on age perception. In: Proceedings of SICE, pp. 2808–2812 (2007)

    Google Scholar 

  7. Gao, F., Ai, H.: Face age classification on consumer images with gabor feature and fuzzy LDA method. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 132–141. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Mu, G., Guo, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: Computer Vision and Pattern Recognition, pp. 112–119 (2009)

    Google Scholar 

  9. Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., Kim, J.: Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recogn. 44, 1262–1281 (2011)

    Article  Google Scholar 

  10. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24, 442–445 (2002)

    Article  Google Scholar 

  11. Ueki, K., Hayashida, T., Kobayashi, T.: Subspace-based age-group classification using facial images under various lighting conditions. In: 7th International Conference on Automatic Face and Gesture Recognition, 6 p (2006)

    Google Scholar 

  12. Guo, G., Fu, Y., Huang, T.S., Dyer, C.R.: Locally adjusted robust regression for human age estimation. Urbana 51, 61801 (2008)

    Google Scholar 

  13. Luu, K., Ricanek, K., Bui, T.D., Suen, C.Y.: Age estimation using active appearance models and support vector machine regression. In: IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–5 (2009)

    Google Scholar 

  14. Kohli, S., Prakash, S., Gupta, P.: Hierarchical age estimation with dissimilarity-based classification. Neurocomputing 120, 164–176 (2013)

    Article  Google Scholar 

  15. Liu, J., Ma, Y., Duan, L., Wang, F., Liu, Y.: Hybrid constraint SVR for facial age estimation. Sig. Process. 94, 576–582 (2014)

    Article  Google Scholar 

  16. Minear, M., Park, D.C.: A lifespan database of adult facial stimuli. Behav. Res. Methods Instrum. Comput. 36, 630–633 (2004)

    Article  Google Scholar 

  17. Suo, J., Wu, T., Zhu, S., Shan, S., Chen, X., Gao, W.: Design sparse features for age estimation using hierarchical face model. In: 8th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 1–6 (2008)

    Google Scholar 

  18. Guo, G., Mu, G., Fu, Y., Dyer, C., Huang, T.: A study on automatic age estimation using a large database. In: IEEE 12th International Conference on Computer Vision, pp. 1986–1991 (2009)

    Google Scholar 

  19. FGNET. http://www.fgnet.rsunit.com

  20. Wang, J.-G., Sung, E., Yau, W.-Y.: Active learning with the furthest nearest neighbor criterion for facial age estimation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 11–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Kilinc, M., Akgul, Y.S.: Automatic human age estimation using overlapped age groups. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 313–325. Springer, Heidelberg (2013)

    Google Scholar 

  22. Chen, K., Gong, S., Xiang, T., Loy, C.C.: Cumulative attribute space for age and crowd density estimation. In: Computer Vision and Pattern Recognition, pp. 2467–2474 (2013)

    Google Scholar 

  23. Guo, G., Wang, X.: A study on human age estimation under facial expression changes. In: Computer Vision and Pattern Recognition, pp. 2547–2553 (2012)

    Google Scholar 

  24. Ni, B., Song, Z., Yan, S.: Web image and video mining towards universal and robust age estimator. IEEE Trans. Multimedia 13, 1217–1229 (2011)

    Article  Google Scholar 

  25. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1955–1976 (2010)

    Article  Google Scholar 

  26. Geng, X., Yin, C., Zhou, Z.-H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2401–2472 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under the Grant RGP36726.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyu Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ren, H., Li, ZN. (2015). Age Estimation Based on Complexity-Aware Features. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16865-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16864-7

  • Online ISBN: 978-3-319-16865-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics