Abstract
The research related to age estimation using face images has become increasingly important. We propose an age estimator using two kinds of local features, the gradient features which well describe the local characteristic, and the Gabor wavelets which reflect the multi-scale directional information. The RealAdaBoost algorithm with a complexity penalty term in the feature selection module is applied to choose meaningful regions from human face for feature extraction, while balancing the discriminative capability and the computation cost at the same time. Furthermore, the hierarchical classifier, which is composed of an age group classification (e.g., 15–39 years old, 40–59 years old etc.) and a detailed age estimation (e.g. 19, 53 years old, etc.) are utilized to get the final age. Experimental results show that the proposed approach outperforms the methods using single feature on PAL and FG-NET database. It also achieves competitive accuracy with the state-of-the-art algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 504–513. Springer, Heidelberg (2008)
Cootes, T.F., Edwards, G.J., Taylor, C.J., et al.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23, 681–685 (2001)
Shan, C.: Learning local features for age estimation on real-life faces. In: Proceedings of the 1st ACM International Workshop on Multimodal Pervasive Video Analysis, pp. 23–28 (2010)
Kwon, Y.H., da Vitoria Lobo, N.: Age classification from facial images. In: Computer Vision and Pattern Recognition, pp. 762–767 (1994)
Hayashi, J., Yasumoto, M., Ito, H., Koshimizu, H.: Method for estimating and modeling age and gender using facial image processing. In: Seventh International Conference on Virtual Systems and Multimedia, pp. 439–448 (2001)
Fukai, H., Takimoto, H., Mitsukura, Y., Fukumi, M.: Apparent age estimation system based on age perception. In: Proceedings of SICE, pp. 2808–2812 (2007)
Gao, F., Ai, H.: Face age classification on consumer images with gabor feature and fuzzy LDA method. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 132–141. Springer, Heidelberg (2009)
Mu, G., Guo, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: Computer Vision and Pattern Recognition, pp. 112–119 (2009)
Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., Kim, J.: Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recogn. 44, 1262–1281 (2011)
Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24, 442–445 (2002)
Ueki, K., Hayashida, T., Kobayashi, T.: Subspace-based age-group classification using facial images under various lighting conditions. In: 7th International Conference on Automatic Face and Gesture Recognition, 6 p (2006)
Guo, G., Fu, Y., Huang, T.S., Dyer, C.R.: Locally adjusted robust regression for human age estimation. Urbana 51, 61801 (2008)
Luu, K., Ricanek, K., Bui, T.D., Suen, C.Y.: Age estimation using active appearance models and support vector machine regression. In: IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–5 (2009)
Kohli, S., Prakash, S., Gupta, P.: Hierarchical age estimation with dissimilarity-based classification. Neurocomputing 120, 164–176 (2013)
Liu, J., Ma, Y., Duan, L., Wang, F., Liu, Y.: Hybrid constraint SVR for facial age estimation. Sig. Process. 94, 576–582 (2014)
Minear, M., Park, D.C.: A lifespan database of adult facial stimuli. Behav. Res. Methods Instrum. Comput. 36, 630–633 (2004)
Suo, J., Wu, T., Zhu, S., Shan, S., Chen, X., Gao, W.: Design sparse features for age estimation using hierarchical face model. In: 8th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 1–6 (2008)
Guo, G., Mu, G., Fu, Y., Dyer, C., Huang, T.: A study on automatic age estimation using a large database. In: IEEE 12th International Conference on Computer Vision, pp. 1986–1991 (2009)
FGNET. http://www.fgnet.rsunit.com
Wang, J.-G., Sung, E., Yau, W.-Y.: Active learning with the furthest nearest neighbor criterion for facial age estimation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 11–24. Springer, Heidelberg (2011)
Kilinc, M., Akgul, Y.S.: Automatic human age estimation using overlapped age groups. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 313–325. Springer, Heidelberg (2013)
Chen, K., Gong, S., Xiang, T., Loy, C.C.: Cumulative attribute space for age and crowd density estimation. In: Computer Vision and Pattern Recognition, pp. 2467–2474 (2013)
Guo, G., Wang, X.: A study on human age estimation under facial expression changes. In: Computer Vision and Pattern Recognition, pp. 2547–2553 (2012)
Ni, B., Song, Z., Yan, S.: Web image and video mining towards universal and robust age estimator. IEEE Trans. Multimedia 13, 1217–1229 (2011)
Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1955–1976 (2010)
Geng, X., Yin, C., Zhou, Z.-H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2401–2472 (2013)
Acknowledgement
This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under the Grant RGP36726.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ren, H., Li, ZN. (2015). Age Estimation Based on Complexity-Aware Features. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-16865-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16864-7
Online ISBN: 978-3-319-16865-4
eBook Packages: Computer ScienceComputer Science (R0)