
Privacy by Design: On the Conformance
Between Protocols and Architectures?

Vinh-Thong Ta and Thibaud Antignac

INRIA, University of Lyon, France
{vinh-thong.ta, thibaud.antignac}@inria.fr

Abstract. In systems design, we generally distinguish the architecture
and the protocol levels. In the context of privacy by design, in the first
case, we talk about privacy architectures, which define the privacy goals
and the main features of the system at high level. In the latter case, we
consider the underlying concrete protocols and privacy enhancing tech-
nologies that implement the architectures. In this paper, we address the
question that whether a given protocol conforms to a privacy architecture
and provide the answer based on formal methods. We propose a process
algebra variant to define protocols and reason about privacy properties,
as well as a mapping procedure from protocols to architectures that are
defined in a high-level architecture language.

1 Introduction

According to the definition provided in [6], “the architecture of a system is the
set of [elements and their relations] needed to reason about the system”. In the
context of privacy, the elements are typically the privacy enhancing technologies
(PETs) themselves and the purpose of the architecture is to combine them to
achieve the privacy requirements. Generally speaking, an architecture can be
seen as the abstraction of a system since an architecture abstracts away the de-
tails provided by PETs (such as message ordering, timing, complex cryptographic
algorithms, etc.). Architectures only capture the main functionalities that a sys-
tem should provide, for instance, which computations and communications are
to be performed by the components.

Works in privacy by design mainly focus on PETs rather than architectures.
In the position paper [3], the authors addressed the problem of privacy by design
at the architecture level and proposed the application of formal methods that
facilitate a systematic architecture design. In particular, they provided the idea of
the architecture language and logic, a dedicated variant of epistemic logics [12], to
deal with different aspects of privacy. Basically, an architecture is defined as a set
of architecture relations, which capture the computations and communications
abilities of each component. For instance, a relation computei(x = t) specifies
that a component i can compute a value t for x. Nevertheless, since [3] is a

? The final publication is available at link.springer.com (URL not yet available).

ar
X

iv
:1

50
1.

03
59

3v
1

 [
cs

.C
R

]
 1

5
Ja

n
20

15

position paper, the language envisioned in the paper is mainly based on an
introductory description. An extended version of this language is detailed in [2].

In this paper, we address the major question that whether the integration
or combination of several different PETs conforms to a particular architecture.
One challenge we have to face is that due to the diversity of technologies and
protocols, their combination can raise a huge number of scenarios. Moreover,
architectures are defined in an abstract way, while concrete implementations are
more detailed, and it is challenging to define a proper abstraction from a lower
to a higher level. The goal of this paper is to provide answers to this question.

Specifically, our main contributions are two-fold: first, we propose a modi-
fied variant of the applied π-calculus [13] for specifying the protocols related to
PETs, and reasoning about the knowledge of components during the protocol
run. Second, we propose a mapping procedure which defines the connection be-
tween the protocol specified in the calculus and the architecture defined in the
architecture language. This mapping allows us to show whether a protocol (or a
combination of protocols) conforms to a given architecture. To the best of our
knowledge, this work is the first attempt that examines the connection between
the two levels based on formal methods in the context of privacy protection.

The paper is organized as follows: in Section 2, we review the privacy ar-
chitectures language (PAL) proposed in [2], which is a high-level language for
specifying architectures and reasoning about privacy requirements in them. Sec-
tions 3 and 4 contain our contributions. The modified applied π-calculus is given
in Section 3. Section 4 discusses the connection between each calculus process
and relation in PAL, as well as the definitions and properties of the conformance
between the two levels. In Section 5 we review the most relevant related works.
Finally, we conclude the paper and discuss about the future works in Section 6.

2 Architecture Level

The language we review here is a simplified version of the one in [2]. The func-
tionality of a service is defined by Ω =

{
X̃ = T

}
, where T is a term and X̃ ∈ Var

represents a variable that can be either indexed (XK) or unindexed (X). Each
X̃ can be a single variable or an array of variables. F ∈ Fun denotes a function,
and �F (X) defines the iterative application of F to the variables in the array
X (e.g.: �+ (X) defines the summation of the variables in a given array).

T ::= X̃ | F (T1, . . . , Tn) | � F (X); X̃ ::= X | XK

A ::= {R}
R ::= Hasarchi

(
X̃

)
| Receivei,j

(
{Att}, X̃

)
| Computei

(
X̃ = T

)
| Checki (T1 = T2) | VerifAttest

j (Att) | Trusti,j
Att ::= Attesti

(
{X̃ = T}

)
An architecture A is defined by a set of components Ci, i ∈ [1, . . . , n], associ-

ated with the set of relations {R}. Each relation R specifies a capability of the
components. Subscripts i and j denote component IDs. Hasarchi (X̃) expresses

the fact that X̃ is a variable that component Ci initially has (i.e., an input
variable of Ci). Receivei,j({Att}, X̃) expresses the possibility for Ci to receive
the variable X̃ directly from Cj , and optionally an attestation Att related to
this variable. An attestation, defined by Attesti({X̃ = T}), captures a statement
made by Ci on the set of equations. Each X̃ = T in the set {X̃=T} expresses
the integrity of X̃, stating that it equals to T . Computei(X̃ = T) says that Ci
can compute a variable defined by an equation X̃ = T . Checki (T1 = T2) states
that Ci can check the satisfaction of property T1 = T2. The property X̃ = T in
Attesti is related to the same property in Computei, namely when Ci computes
X̃ = T it can send an attestation on this. VerifAttest

j (Att) says that Cj is able to
successfully verify the origin of an attestation. Finally, Trusti,j is used to express
the fact that component Ci trusts Cj , and this trust relation does not change
during operations. Trust relations are pre-defined, and an attestation sent by Ci
will be accepted by Cj after a successful verification only if Cj trusts Ci.

The semantics of an architecture is defined as its sets of compatible traces. A
trace is a sequence of possible high-level events occurring in the system. Events
can be seen as instantiated relations of the architecture.

θ ::= Seq(ε)
ε ::= hasi

(
X̃ : V

)
| receivei,j

(
{Att}, X̃ : V

)
| computei

(
X̃ = T

)
| checki (T1 = T2) | verifAttest

j (Att)

To distinguish events from relations, we let events start with lowercase. For
instance, event hasi

(
X̃ : V

)
captures the fact that Ci has the value V for X̃,

and computei
(
X̃ = T

)
expresses the fact that Ci performes the computation

X̃ = T . The other events are interpreted based on their corresponding relations
(see [2] for details). An event trace θ is compatible with an architecture A, if in
this trace, only events which are instantiations of components of the architecture
can appear in θ – except for the compute events. For the case of compute events,
besides the computation specified explicitly in the architecture, we also take into
account the “background” computations (deduction) that can be performed by
each component, based on the data it has. This deduction ability of each Ci is
captured by its deduction system .i [2]. The semantics of events is based on the
component states and the global state of the architecture, given as follows:

State = StateV × StateP ;
StateV = (Var → Val⊥); StateP =

{
{X̃ = T} ∪ {T1 = T2} ∪ {Trusti,j}

}
The state of a component (State) is composed of a variable state (StateV)

and a property state (StateP). StateV assigns a value (which can be undefined,
⊥) to each variable. StateP defines the set of properties X̃ = T and T1 = T2
known by a component.

In the sequel, σ is used to denote the global state of the architecture A (state
of the components 〈C1, . . . , Cn〉) defined on Staten. σi (σi = (σvi , σ

pk
i)) denotes

the state of the component Ci, where σvi and σpki represent the variable state
and property state of Ci, respectively. The initial state of A, denoted by InitA,
contains only the trust properties specified by the architecture. The semantics
of an event trace is defined by the function ST , which specifies the impact of

a trace of events on the states of the components, through the impact of each
event on the states (defined by the function SE).

ST : Trace × Staten → Staten; SE : Event × Staten → Staten;
ST (ε.θ, σ) = ST (θ, SE(ε, σ)); ST (〈〉, σ) = σ;
SE (computei

(
X̃ = T

)
, σ) = σ[(σvi [eval(T, σvi)/X̃], σpki ∪ {X̃ = T}) / σi].

Due to lack of space we only present SE for the compute event here, the full
list can be found in [2]. The notation ε.θ is used to denote a trace whose first
element is ε and the rest of the trace is θ, while 〈〉 denotes the empty trace. Each
event modifies only the state σi of the component Ci. A modification is expressed
by σ[(v, pk)/σi] that replaces σvi and σpki of σi by v and pk, respectively. The
effect of computei(X̃ = T) is to set X̃ to the evaluation of T based on the current
variable state σvi , which is denoted by eval(T, σvi). Event computei also results
in adding the knowledge about X̃ = T to the property state σpki .

The semantics of an architecture A is defined as S(A) = {σ ∈ Staten | ∃θ ∈
T (A) such that ST (θ, InitA) = σ}, where T (A) is the set of compatible traces of
A. To reason about the privacy requirements of architectures, the architecture
logic is proposed in [2], which is based on the architecture language PAL.

φ ::= Hasalli
(
X̃

)
| Hasnonei

(
X̃

)
| Ki (T1 = T2) | φ1 ∧ φ2

This logic involves modality Ki that represents the epistemic knowledge [12]
of Ci about T1 = T2. In the rest of the paper, we refer to φ as an architecture
property. The semantics S(φ) of a property φ is defined as follows:

1. A ∈ S(Hasalli
(
X̃

)
) ⇔ ∃ σ ∈ S(A), σvi (X̃) 6= ⊥

2. A ∈ S(Hasnonei

(
X̃

)
) ⇔ ∀ σ ∈ S(A), σvi (X̃) = ⊥

3. A ∈ S(Ki (Eq)) ⇔ ∀ σ′ ∈ Si(A), ∃ σ ∈ Si(A), ∃ Eq′: (σ ≥i σ′) ∧ (σpk
i .i Eq′)

∧ (Eq′ ⇒ Eq),

where Eq (Eq′) represents an equation T1 = T2 (T ′
1 = T ′

2). An architecture
satisfies the Hasalli (X̃) property if and only if Ci may obtain the value of all
Xk in Range(X) in at least one compatible execution trace. Hasnonei (X̃) holds
if and only if no execution trace can lead to a state in which Ci gets any value
of any Xk. We note that Hasi properties only inform on the fact that Ci can
get or derive some values for the variables but they do not bring any guarantee
about the correctness of these values. Integrity requirements can be expressed
using the property Ki(T1 = T2), which states that the component Ci knows the
truth of the integrity property T1 = T2. In σ ≥ σ′, compared to σ′, σ represents
the state at the end of a longer trace. Finally, σpk

i .i Eq′ and Eq′ ⇒ Eq capture
that Eq′ can be deduced from σpk

i and Eq′, respectively.
Example Architecture: Let us consider a very simple smart metering ar-

chitecture which consists in the communication between two components: the
meter (M) and the operator (O). The goal of this architecture is to ensure that
the operator will get the consumption fee for a given period and to be convinced
that the fee is correct. The privacy requirement says that O must not obtain the
consumption data. One possible design solution is that the meter passes directly
the consumption data to the operator who will compute the fee:

A1 = {for i ∈ [1, . . . , r]: HasarchM (Xc); ComputeM (Xmi = Xci);
ReceiveO,M (AttestM (Xmi = Xci), Xmi); VerifAttestO (AttestM (Xmi = Xci));

ComputeO(Xtfi
= F (Xmi); ComputeO(Xfee = �+ (Xtf)), TrustO,M}.

In the architecture A1, the meter initially has the (input) variable Xc that
represents the array of r consumption data Xci

, i ∈ [1, . . . , r]. The meter is
capable to compute each metered data (Xmi

) based on each consumption data
(Xci). Intuitively, in Xmi = Xci , Xmi will get the value of Xci . Then, the
operator will receive the metered data (Xmi), along with the attestation made by
M on the integrity property Xmi

= Xci
. After verifying the received attestation

with success, due to TrustO,M the operator knows that Xmi
= Xci

. Then for
each Xmi

, O computes the tariff based on the function F . Finally, O computes
the summation of the r tariffs (i.e., array Xtf) to get the fee for the period.
The requirements of the architecture are modeled with the properties of the
architecture logic. Namely, HasallO (Xfee) specifies that O has (all) the fee, while
HasnoneO (Xc) says that O must not have any consumption data. A1 fulfills the
first requirement, but it does not satisfy the privacy requirement because based
on ReceiveO,M (AttestM (Xmi

= Xci
), Xmi

) O can obtain Xci
from Xmi

.

3 Protocol Level

To reason about the concrete implementations of an architecture, we propose
a modified variant of the applied π-calculus. We decided to modify the basic
applied π-calculus [13] because thanks to its expressive syntax and semantics, it
is broadly used for security verification of systems and protocols (e.g., [14], [10],
[11], [18], [9], [4], [17]). Our main goal is to modify some syntax and semantics
elements of the applied π-calculus, making it more convenient to find the con-
nection between the calculus semantics and the interpretation of architecture
relations. One of such modifications is the notion of component, which is char-
acterized by three elements: (i) the internal behavior of the component; (ii) the
unique ID assigned to the component; and (iii) the set of IDs of the components
who are trusted by this component. Another reason why we cannot use the basic
applied π-calculus is that it focuses on reasoning about the information a Dolev-
Yao attacker (who can eavesdrop on all communications) obtains. However, in
our case we reason about the information that components can have, which are
only aware of the communications they can take part in.

3.1 Syntax of the Modified Applied π-Calculus

We assume an infinite set of names N and variables V, and a finite set of
component identifiers L, where V ∩ N ∩ L = ∅. Terms are defined as follows:

t ::= c | li | n,m, k | x, y, z | f(t1, . . . , tp).

The meaning of each term is given as follows: c models a communication chan-
nel. li represents a component ID (li 6= lj if i 6= j) that uniquely identifies a

component. n, m and k denote names, which model some kind of data (e.g.,
a random nonce, a secret key, etc.). Terms x, y, z denote variables that repre-
sent any term, namely, any term can be bounded to variables. f(t1, . . . , tp) is a
function, which models cryptographic primitives, e.g., digital signature can be
modeled by sign(xm, xsk), where xm and xsk specify the message and the private
key, respectively. Moreover, f can also be used to specify verification functions
(e.g., the signature check is modeled by function checksign(sign(xm, xsk), xpk),
where xpk represents the public key corresponding to the private key xsk).

We rely on the same type system for terms as in the applied π-calculus [13].
Due to lack of space, we omit the unimportant details of this type system, and
leave it implicit in the rest of the paper. We assume that terms are well-typed
and that substitutions preserve types (see [22] for details).

The internal operation of components is modeled by processes. Processes are
specified with the following syntax:

P , Q, R ::= c〈t〉.P ‖ c〈tm, tsig)〉.P ‖ c(x).Q ‖ c(xm, xsig).Q ‖ P |Q
‖ νn.P ‖ let x = t in P ‖ if (t1 = t2) then P ‖ 0.

Note that for simplicity we left out the infinite replication of processes, !P .
As a result a protocol/system run consists of a finite number of traces.

Process c〈t〉.P sends the term t (where t 6= (tm, tsig)) on channel c, and
continues with the execution of P . Process c〈tm, tsig〉.P models the attestation
sending, where tm and the signature tsig are sent on c.

Process c(x).Q waits for a term on channel c and then binds the received
term to x in Q. Process c(xm, xsig).Q waits for a term xm and its signature xsig
on channel c, which models the attestation reception.

P |Q behaves as processes P and Q running (independently) in parallel. A
restriction νn.P is a process that creates a new, bound name n, and then behaves
as P . The name n is called bound because it is available only to P . Process let
x = t in P proceeds to P and binds every (free occurrence of) x in P to t.

Process if (t1 = t2) then P says that if t1 = t2 (with respect to the equational
theory E, discussed later) then process P is executed, else it stops. Its special
case is if xm = checksign(xsig, xpkli) then P , which captures the verification of an
attestation (i.e., signature xsig with key xpkli). For message authentication and
integrity protection purposes digital signature and message authentication code
(MAC) are used. In this paper we only consider signature.

Finally, the nil process 0 does nothing and specifies process termination.
Components: To make the connection between calculus processes and archi-

tecture relations more straightforward, we introduce the notion of components.
bP cρl defines a component with the unique identifier l, who trusts the compo-
nents whose IDs are in the set ρ, and whose behavior is defined by process P .
The trust relation can be either one-way or symmetric, for instance, bP c{l2}

l1

and bQc{l1}
l2

represent components l1 and l2 who trust each other. The rationale
behind this way of component specification is that the component IDs and the
trust relation between them are pre-defined, and do not change during the pro-

tocol run (this is what we assumed at the architecture level). In addition, we
assume that a trusted component will not become untrusted.

Systems: A system, denoted by S, can be an empty system with no compo-
nent: 0S ; a singleton system with one component: bP c∅l ; the parallel composition
of components: bP cρ1

l1
| bQcρ2

l2
, where ρ1 and ρ2 may include l2 and l1, respec-

tively; or a system with name restriction. To capture more complex systems, we
also allow systems to be the parallel composition of sub-systems, S1 | S2.

S ::= 0S | bP cρl | νn.S | (S1 | S2).

The name restriction νn.S represents the creation of new name n, such as secret
keys, or a random nonce which are only available to the components in S.

3.2 Semantics of the Modified Applied π-Calculus

In order to check the conformance between protocols and architectures, it suffices
to consider the internal reduction rules of the calculus, which model the behavior
of the protocol (without contact with its environment). Reduction rules capture
the internal operations (e.g., let or if processes) and communications performed
by components. We define and distinguish the following reduction rules:

(Reduction rules)
(Rcv) bc〈t〉.P cρi

li
| bc(x).Qcρj

lj

rcv(lj ,li,x:t)
−→ bP cρi

li
| bQ{t/x}cρj

lj
, t 6= (tm, tsig);

(Rcvatt) bc〈tm, tsig〉.P cρi
li
| bc(xm, xsig).Qc

ρj

lj

rcvatt(lj ,li,xm:tm)
−→

bP cρi
li
| bQ{tm/xm, tsig/xsig}c

ρj

lj
;

(Verifatt) bif xm = checksign(xsig, tpkli) then Q′cρj

lj

veratt(lj , xm:tm)
−→ bQ′cρj

lj
,

where {tm/xm, tsig/xsig}. Note: lj accepts the attestation if li ∈ ρj .

(Check) bif (t1 = t2) then P cρj

lj

check(lj ,t1:t2)
−→ bP cρj

lj
(t1 = t2 ∈ E, t2 6= checksign);

(Comp) blet x = t in P cρj

lj

ωcomp−→ bP{t/x}cρj

lj
, (t = x′ or f , such that

ωcomp = comp(lj , x : t) when f /∈ {sign, checksign}, else ωcomp = τ);

(Has) (νk.) blet x = k in P cρj

lj

has(lj ,x:k)
−→ (νk.) bP{k/x}cρj

lj
,

(Error) bif (t1 = t2) then P cρj

lj

error−→ b0cρj

lj
(if t1 = t2 /∈ E);

(Par-C) bP cρj

lj

ωc−→ bP ′cρj

lj
then bQ | P cρj

lj

ωc−→ bQ | P ′cρj

lj
;

(Res-C) bP cρj

lj

ωc−→ bP ′cρj

lj
then bνn.P cρj

lj

ωc−→ bνn.P ′cρj

lj
, where

ωc ∈ {comp(lj , x : t), has(lj , x : k), check(lj , t1 : t2), error, veratt(lj , xm:tm)};

(Par-S) S1
ωs−→ S′

1 then S2 | S1
ωs−→ S2 | S′

1;

(Res-S) S
ωs−→ S′ then νn.S ωs−→ νn.S′, where

ωs can be ωc, and rcv(lj , li, x : t), rcvatt(lj , li, xm : tm).

Before defining the system states, we label each reduction relation (arrow) based
on the name of the rule and the terms used in them. We adopt the notion of
equational theory E from [13], [22], which contains rules of form t1 = t2 ∈ E,
that define when two terms are equal. For instance, the equational theory E may
include rules for signature verification, decryption, MAC verification, etc. The
meaning of each reduction rule is as follows:

– Rule (Rcv) captures the communication between components li and lj . Namely,
li sends value t for x on channel c, which is received by lj . As a result, we
get Q{t/x} that binds t to every free occurrence of x in Q. It is assumed
that t 6= (tm, tsig), which is treated as a special case.

– Rule (Rcvatt) deals with exchanging the message tm and the signature tsig
on channel c, which models the reception of the attestation Attestli({xm =
tm}). As a result, we get Q in which tm and the signature are bound to xm
and xsig, respectively. The reason that we distiguish (Rcvatt) from (Rcv) is
because we want to make a clear distinction between the cases of receiving
a message with and without an attestation.

– Rule (Verifatt) captures the case when after binding tm and tsig to xm and the
signature xsig, respectively, component lj successfully verified the signature
using the corresponding public key of li, tpkli . We implicitly assume that tm
and tsig contain enough information for the receiver to identify the “type” of
the received message (e.g., the consumption fee in smart metering systems).
Rules (Rcvatt) and (Verifatt) together specify the scenario when li sends to
lj the value tm for xm, with the signature that proves the integrity and the
authenticity of this message. Then, in case lj trusts li, it knows the truth
about the integrity property xm = tm.

– Rule (Check) considers the case when two terms are equal in the check (with
respect to the equational theory E), which leads to P as result. We assume
that t2 is not the checksign function, which is used for the attest verification.

– Rule (Comp) models the computation x = t performed by lj . As a result,
every free occurrence of x in P is given the value t. In this rule we assume
that t can be either a variable or a function (except for sign and checksign,
because they are considered as parts of the attestation), but not a name.

– Rule (Has) deals with the case when t is a name. The name k, either bound
(with νk) or free (without νk), represents the value of x. Here x is used to
model the variable that lj initially has to capture the input data coming
from the environment (e.g., the consumption data in the smart metering).

– Rule (Error) specifies the case when two terms are not equal with respect to
E. As a result, the process will continue with the nil process.

– Rules (Par-C) and (Res-C) say that the if and let reductions are closed
under parallel composition and restriction within a component, respectively.
Rules (Par-S) and (Res-S) capture that all the reductions are closed under
parallel composition and restriction on systems, respectively.

Instead of referring to the trace of reductions ω1
s−→ . . . ω

m
s−→ we will refer to the

trace of the corresponding labels ω1
s , . . . , ωms for the sake of clarity.

States of components and systems: Let us consider a system S with n
components. Let LabelS be the set of all labels (ωs ∈ LabelS) of the reduction
relations defined above, and let LTraceS be the set of all possible label traces
of S. We define the functions VST, VT and VL that update the states of the
components and the entire system. VT and VL are similar to ST and SE in PAL,
but they are based on label traces and labels instead of traces of events and
events. VST takes as input the set of all the possible label traces of S and handle
each trace with VT. Let StatenS denote the set of global state of S and ∅tr an
empty set of traces. Finally, in ωs.tr the label ωs is the prefix of the trace tr.

VST : {LTraceS} × StatenS → StatenS ;
VT : LTraceS × StatenS → StatenS ; VL : LabelS × StatenS → StatenS ;
VST (LTraceS , λ) = VST (LTraceS\{tr}, VT (tr, λ)); VST (∅tr, λ) = λ;
VT (ωs.tr, λ) = VT (tr, VL(ωs, λ)); VT (〈〉, λ) = λ;
VL(has(li, x : k), λ) = λ[(λvli{k/x}, λ

pk
li
) / λi];

VL(rcv(li, lj , x : t), λ) = λ[(λvli{t/x}, λ
pk
li
) / λi]

VL(rcvatt(li, lj , xm : tm), λ) = λ[(λvli{tm/xm}, λpki) / λli]
VL(comp(li, x : t), λ) = λ[(λvli{λ

v
li
t/x}, λpkli ∪ {x = t}) / λli]

VL(check(li, t1 : t2), λ) = λ[(λvli , λ
pk
li
∪ {t1 = t2}) / λli] if λvlit1 = λvlit2 ∈ E

VL(veratt(li, xm : tm), λ) = λ[(λvli , λ
pk
li
∪ {{xm = tm} if Trustli,lj ∈ λ

pk
li
}) / λi].

We let λli and λ denote the state of component li and the global state that
consists in the state of all components in the system, respectively. Each λli is
defined by the pair (λvi , λ

pk
li
), which is the variable state and the property state

for component li, respectively. In our calculus the variable state λvli is defined by
the set of substitutions {t1/x1, . . . , tm/xm}, which captures the terms available
to li, as well as the values of each variable from the perspective of li. λvli{t/x}
is a shorthand for (λvli ∪ {t/x}) \ {t′/x}, if {t′/x} ∈ λvli for some t′. λpki is the
set of integrity properties (e.g., t1 = t2) that captures the knowledge gained by
lj about these properties. λvi t represents the evaluation of t based on λvi , and
λvlit1 = λvlit2 ∈ E says that the evaluation of t1 and t2 in λvli are equal up to the
equational theory E. We also consider the state update that results after a failed
check (namely, λ[λErr/λi], where λErr denotes the error state), though we omit
the formal details here to save space.

4 From Protocols to Architectures

In the sequel, we discuss how the corresponding architecture can be extracted
based on a given protocol or system. Namely, given a protocol specified in our
process calculus we define an extraction procedure that extracts the correspond-
ing architecture relations. The extraction procedure is based on the application
of a set of extraction rules that we define below. Each extraction rule specifies
the connection between the traces of labels of a system and the corresponding ar-
chitecture relation. We assume a (initial) system S which consists in the parallel

composition of r components (for a finite r), namely, S def= bP1cρ1
l1
| . . . | bPrcρr

lr
.

The corresponding architecture relations will be extracted based on the possible
traces (i.e., the trace semantics) of S. We emphasize that during the extraction
of architectural properties we only consider the reduction traces to capture the
communication between components, without considering the activity of the en-
vironment (i.e., the Dolev-Yao attacker). Formally, we do not take into account
the labelled transitions known in the applied π-calculus [13]. The reason is that
the architecture relations focus only on the abilities of the components and the
communication between them.

An architecture does not not contain the Compute relations for background
computations. The situation is similar at the protocol level, where the protocol
description specifies the basic computations and communications of the compo-
nents, without involving the background computations. Hence, when extracting
the architecture relations, it is sufficient to consider only the protocol description
and its corresponding reduction traces. The background computations will be
taken into account when we discuss the mapping to the Hasj architecture logic
property for reasoning about the data that can be deduced by a component.

Given a system S and the set LTraceS of (all) its possible label traces, we
define the extraction function XT that extracts the corresponding architecture
based on LTraceS . XST is interpreted similarly as VST. RelS denotes the set of
architectural relations of S. Function XL extracts a relation based on a label ωs
and put it into αS . We use αS to denote the set of the extracted relations so far.
We have the following extraction rules:
XST : {LTraceS} × RelS → RelS ;
XT : LTraceS × RelS → RelS ; XL : LabelS × RelS → RelS ;
XST (LTraceS , αS) = XST (LTraceS\{tr}, XT (tr, αS)); XST (∅tr, αS) = αS ;
XT (ωs.tr, αS) = XT (tr, XL(ωs, αS)); XT (〈〉, αS) = αS ;
Rhas: XL(has(lj , x : k), αS) = αS ∪ {Hasarchlj

(x)};
Rrecv: XL(rcv(lj , li, x : t), αS) = αS ∪ {Receivelj ,li(x)};
Rrecv

att : XL(rcvatt(lj , li, xm : tm), Computeli(xm = tm) ∈ αS) =
αS ∪ {Receivelj ,li ({Att}, xm)}, where Att = Attestli({xm = tm});

Rcomp: XL(comp(lj , x : t), αS) = αS ∪ {Computelj (x = t)}, where t /∈ {sign, checksign};
Rcheck: XL(check(lj , t1 : t2), αS) = αS ∪ {Checklj (t1 = t2)} if t1 = t2 ∈ E;
Rattver: XL(veratt(lj , xm : tm), {Trustlj ,li , Receivelj ,li({Att}, xm)} ⊆ αS) =

αS ∪ {VerifAttestlj
(Att)}, where Att = Attestli({xm = tm});

All the rules above capture the communication and computation abilities
of each component during the protocol run and are defined based on the trace
semantics. In contrast, the Trustli,lj relations are extracted based on the syntax.
The initial set of relations is αinitS = {Trustli,lj if lj ∈ ρi | ∀ li, lj ∈ {l1, . . . , lr}}.
The meaning of each rule is defined as follows:
– Rule Rhas corresponds to the relation Hasarchlj

(x), which says that lj initially
has a value for x. The name k represents an input data for x of lj .

– Rrecv extracts the relation Receivelj ,li(x), and describes the case when lj
receives a value t for x during the protocol run. S′ and S′′ represent the
systems before and after the communication between li and lj . S′ involves
the possibility for lj to receive the variable x.

– Rrecv
att extracts the relation Receivelj ,li(Attestli({xm = tm}), xm), where {xm

= tm} contains xm = tm, along with all the equations xg = xh computed
by li in order to constitute tm. Intuitively, besides attesting xm = tm, li
attests the integrity of all the computations it performed in order to get
xm. S′ includes the possibility for lj to receive xm, and its signature xsig.
Assumption Computeli(xm = tm) ∈ αS captures the fact that li is able to
compute xm = tm, hence, it can make an attestation on this equation.

– Rule Rcomp corresponds to the relation Compute, for the equations x = f or
x = x′. We do not extract the computations for signature and its verification
since these computations are integrated within the Attest relation.

– Rule Rcheck extracts the relation Check. To be able to check an equation,
a component must have the ability to perform the function required in the
check and it should possess the required data during the protocol run. This is
determined by the equational theory E, which defines the checking abilities
of a component. We do not extract Check for signature check because it is
considered as an attestation verification.

– Rule Rattver deals with the case when component lj successfully verified
the attestation sent by component li. However, we get the corresponding
relation VerifAttestlj

(Att) only in case li ∈ ρj (i.e., lj trusts li). The assumption
Receivelj ,li(Att, xm) ∈ αS captures the fact that lj has received (Att, xm).

The extraction procedure starts with the initial system S, then we follow the
possible reduction traces from S and apply the extraction rules where possible.
Although during the extraction every possible label trace of the system is exam-
ined, due to the simplifications we made on the processes (e.g., infinite process
replication is leftout), the number of traces is finite, hence, the extraction proce-
dure will terminate. In the sequel, we let AS denote the extracted architecture
of S (i.e., the set of relations αS when we have examined all the possible traces).

Definition 1 (State based semantics) The state based semantics of a given
system is defined as V(S) = {λ ∈ StatenS | ∃ tr ∈ T (S), VT (tr, InitS) = λ}.

InitS is the initial state of the system S which contains only the Trust rela-
tions in λpk. We adopt the Has properties used in PAL (Section 2), and define
their semantics based on the semantics of the calculus.

ψ ::= Hasallli (x) | Hasnoneli (x) | Kli (t1 = t2) | ψ1 ∧ ψ2

Definition 2 (Semantics of property ψ for systems)

1. S ∈ V(Hasallli (x)) ⇔ ∃ λ ∈ V(S): ∃ t′ and t such that
(λvlit

′ = t) ∈ E, where BoundTo(t) = x
2. S ∈ V(Hasnoneli

(x)) ⇔ ∀ λ ∈ V(S) and ∀ t ∈ terms(λvli):
6 ∃ t′ such that (λvlit

′ = t) ∈ E, where BoundTo(t) = x
3. S ∈ V(Kli (Eq)) ⇔ ∀ λ′ ∈ Vli (S) ∃ λ ∈ Vli (S), ∃ Eq′:

(λ ≥li λ′) ∧ (λpk
li
.E Eq′) ∧ (Eq′ ⇒E Eq).

S satisfies the property Hasallli (x) when during the system run, li can deduce
or obtain a value t for x. (λvlit

′ = t) ∈ E means that li can deduce t based on
λvlit

′ and the equational theory E. BoundTo(t) = x captures the fact that this
t has been bounded to x during the reduction trace (i.e., t is the value of x). S
satisfies Hasallli (x) when li cannot deduce or obtain any value t for x. Finally,
the deduction λpk

li
.E Eq′ and Eq′ ⇒E Eq are defined on the deduction system

based on the equational theory E.
To compare AS and A, we define E , the set of type-preserved mappings from

terms in the calculus to the terms in PAL: E = {li 7→ i; x 7→ X̃; f(t1, . . . , tm) 7→
F (T1, . . . , Tm); f(x1, . . . , xm) 7→ �F (X), X = [X1, . . . , Xm]}. It is important
to emphasize that in each mapping, the result and its preimage must have the
same type. Defining an explicit type system for terms is not in the scope of
this paper. Here, we only provide general type matching requirements for the
mapping rules, giving the reader an intuition about the mapping to understand
the definitions given below. In E , each ID li can be mapped to an ID i; each
x can be mapped to a X̃ of the same type. f(t1, . . . , tm) can be mapped to
F (T1, . . . , Tm) if each (tj , Tj) pair has the same type, and the two functions
return the same type, too. Similarly, f(x1, . . . , xm) can be mapped to �F (X)
if they return the same type, and the array X contains m variables, such that
each corresponding variable pair has the same type. In the sequel, we let EAS
denote the application of the mapping E to the architecture AS .

The property 1 discusses the connection between a system S and its extracted
architecture EAS with respect to the Has and K logical properties (φ and ψ).

Property 1 (Correctness of the mapping) Given a system S and its ex-
tracted architecture EAS, for some E, we have that ∀ x, li, t1, t2 in S and
∀ X̃, i, T1, T2 in EAS, where {x 7→ X̃, li 7→ i, t1 7→ T1, t2 7→ T2} ∈ E
: 1. S ∈ V(Hasallli (x)) iff EAS ∈ S(Hasalli

(
X̃

)
); 2. S ∈ V(Hasnoneli (x)) iff

EAS ∈ S(Hasnonei (X̃)); and 3. S ∈ V(Kli (t1 = t2)) iff EAS ∈ S(Ki (T1 = T2)).

The first point of Property 1 says that if the system S satisfies Hasallli (x),
then the extracted architecture EAS of S satisfies Hasalli

(
X̃

)
, and vice versa.

The second point is related to the privacy requirement capturing that when EAS
satisfies Hasnonei (X̃), the system S satisfies Hasnoneli

(x), and vice versa. The
third point is related to the integrity property stating that if in the system S
component li knows t1 = t2, then in the extracted architecture this component
knows the corresponding T1 = T2, and vice versa. The proof is based on the
semantics of the architecture and the state based semantics of the systems, as
well as the correspondence between the deduction rules of the privacy logic and
the equational theory E of the calculus.

We give two conformance definitions between protocol and architecture, a
strong one and a weak one.

Definition 3 (Strong Conformance) Let us consider a system S and an ar-
chitecture A. We say that S strongly conforms to A up to E (S |=s

E A) if ∃ E such
that EAS = A.

In the strong case, we require that there exists a mapping E such that EAS
contains exactly the same relations as A.

Definition 4 (Weak Conformance) Let us consider a system S and an ar-
chitecture A. We say that S weakly conforms to A up to E (denoted S |=w

E A) if
(i.) ∃ E such that A ⊂ EAS, and (ii.) ∀ x, X̃ such that {x 7→ X̃} ∈ E : If A ∈
S (Hasnonei (X̃)) then S ∈ V(Hasnoneli (x)).

Point (i.) of the weak case requires the more relaxed A ⊂ EAS . Point (ii.)
says that for every X̃ in the privacy requirementHasnonej (X̃) of the architecture,
lj cannot have any value t for x in the system S (where {x 7→ X̃} ∈ E).

Next, we provide the state simulation and bisimulation definitions in order
to formulate Properties 2 and 3 about the relationship between the states of a
system and states of an architecture in case of weak and strong conformance.

Definition 5 (State simulation): Let us consider a system S and an archi-
tecture A. We say that λ ∈ V(S) simulates σ ∈ S(A) up to E (denoted by λ vE
σ), if ∀ li, x, t1, t2 in S, and ∀ i, X̃, T1, T2 in A, such that {li 7→ i, x 7→ X̃, t
7→ T , t1 7→ T1, t2 7→ T2} ∈ E :

– if ∃ σ[(σvi [V /X̃], σpki) / σi] ∈ S(A), then ∃ λ[(λvli ∪ {t/x}, λ
pk
li

) / λli] ∈ V(S)
– if ∃ σ[(σvi [eval(T, σvi)/X̃], σpki ∪ {X̃ = T}) / σi] ∈ S(A), then ∃ λ[(λvli ∪
{λvlit/x}, λ

pk
li
∪ {x = t}) / λli] ∈ V(S), and

– if ∃ σ[(σvi , σ
pk
i ∪ {T1 = T2}) / σi] ∈ S(A), then ∃ λ[(λvli , λ

pk
li
∪ {t1 = t2}

) / λli] ∈ V(S).

Also, we write λ v(X̃,x)
E σ if λ simulates σ up to E, but with respect to only the

pair (X̃, x), where {x 7→ X̃} ∈ E.

Each point of Definition 5 captures the state simulation that results from the
corresponding architecture relations. For example, the second point says that if
∃ Computei(X̃ = T) ∈ A then ∃ Computeli(X̃ = T) ∈ EAS .

Definition 6 (State bisimulation): Given a system S and an architecture A:
1. We say that λ ∈ V(S) and σ ∈ S(A) simulate each other up to E (λ 'E σ),

if λ vE σ and σ vE λ.
2. We say that λ ∈ V(S) and σ ∈ S(A) simulate each other up to E and the

variable pair (X̃, x), λ '(X̃,x)
E σ, if λ v(X̃,x)

E σ and σ v(X̃,x)
E λ.

Property 2 Given a system S and an architecture A, where λ ∈ V(S) and
σ ∈ S(A). We have that S |=s

E A iff λ 'E σ.

Property 2 says that when S strongly conforms to A, then the states of lj in
S simulates the states of the corresponding component j in A, and vice versa.

Property 3 Given a system S and an architecture A, where λ ∈ V(S) and
σ ∈ S(A). We have that S |=w

E A iff (i.) λ vE σ and (ii.) λ '(X̃,x)
E σ, for all

X̃ in Hasnonej (X̃).

Property 3 says that in case S weakly conforms to A, then the states of
lj simulates the states of the corresponding component j, and these states are
bisimilar for all the variable pair (x, X̃), such that Hasnonej (X̃) holds. A conse-
quence of Properties 2 and 3 is that it is sufficient to show the state simulation
and bisimulation to prove the weak and strong conformance properties. These
two properties also capture the correctness of the mapping with respect to the
weak and strong conformance definitions. The proof of Properties 2 and 3 is
based on the defined extraction rules and the correspondence between functions
SE of the architecture and VL of the system.

Example Conformance Check: We check the conformance between an
example protocol and the architecture A1 at the end of Section 2, with r = 1.
Let us consider the protocol description in which there are components lM and
lO that refer to the meter and operator, respectively. The behavior of the meter
is specified by the process RM . The operator is defined by the process RO.

RM
def= let xc1 = k1 in P1; P1

def= let xm1 = xc1 in P2;
P2

def= let xsig = sign(xm1 , skm) in P3; P3
def= cmo〈xm1 , xsig〉. 0.

RO
def= cmo(xm1 , xsig). 0. S

def= bRMclM | bROc
lM
lO

.

Due to lack of space, we use this very simple example to demonstrate the
mapping procedure and the conformance check between S and A1. The initial
relations set αinitS is {TrustlO,lM }. The architecture relations corresponding to S
can be extracted in the following steps: From the two reductions

S
has(lM , xc1 :k1)

−→ bP1clM | bROc
lM
lO

comp(lM , xm1 :xc1)
−→ bP2clM | bROc

lM
lO

and rules
Rhas, Rcomp we have αS = αinitS ∪ {HasarchlM

(xc1)} ∪ {ComputelM (xm1 = xc1)}.
The let-process in P2 has no effect on the extraction, while the channel synchro-
nization will result in adding ReceivelO,lM ({xm1 = xc1}, xm1) to αS . Since RO
terminates right after receiving the attestation, the two ComputelO relations and
VerifAttestlO

(AttestlM ({xm1 = xc1})) cannot be extracted. This means that the
system S does not conform to the architecture A1.

5 Related Works

Dedicated languages have been proposed to specify privacy properties (e.g., [5],
[7], [16]) but they are complex and not intended to be used at the architectural
level. In [2,3] the authors addressed the idea of applying formal methods to
architecture design and proposed a simple privacy architecture language (PAL).

On the other hand, there are also many works focusing mainly on the protocol
level, providing formal methods for specifying and verifying protocols, as well as
reasoning about the security and privacy properties (e.g., [19], [21], [8]). For this
purpose, process algebra languages are the most favoured means in the literature,
because they are general frameworks to model concurrent systems.

In addition, among the process algebras, the applied π-calculus ([22], [13]) is
one of the most promising language in the sense that its syntax and semantics

are more expressive than the others (e.g., [20], [1], [15]). It also have been used
to analyse security and privacy protocols (e.g., in [14], [10], [11], [18], [9], [4],
[17]). However, we cannot use it directly for our purpose because for instance,
it lacks syntax and semantics for modelling component IDs and trust relations.
Some modifications and extensions of the applied π-calculus are required, which
we proposed in Section 3.

Finally, the definition of the architecture comes before the definition of the
protocol in software development cycles. Therefore, we chose to make it pos-
sible to verify the conformance of a protocol described in our language to an
architecture. We used the architecture language in [2] for this purpose. Its main
advantage is that (i) compared to informal pictorial methods, or semi-formal
representations such as UML diagrams, it is more formal and precise, while (ii)
compared to process calculi, it is more abstracted. The architecture language
PAL enables designers to reason at the level of architectures, providing ways to
express properties without entering into the details of specific protocols.

6 Conclusions and Future Works

In this paper, we proposed the application of formal methods to privacy by
design. We provided the mapping from the protocol level to the architecture level
for checking if a given implementation conforms to an architecture and showed
its correctness. For this purpose, we modified the applied π-calculus and defined
the connection between the semantics of the calculus and PAL. To the best of
our knowledge, this is the first attempt at examining the connection between
the protocol and the architecture levels in the privacy protection context.

The calculus version and the mapping procedure we proposed in this paper
are based on a simplified version of the architecture language. Indeed, we only
consider the attestation on equation X̃ = T . Moreover, our proposed calculus
(and mapping) does not support the modelling of zero-knowledge proofs, as well
as the posibility of spot-checks used in toll pricing systems. Hence, our method
can only handle simple architectures and protocols at this stage. One future
direction of our work is to extend the calculus to support these such extensions.

Acknowledgements. The authors would like to thank Daniel Le Métayer for
his initial idea and valuable comments during this work. This work is partially
funded by the European project PARIS/FP7-SEC-2012-1, the ANR project BIO-
PRIV, and the Inria Project Lab CAPPRIS.

References

1. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: the Spi calculus.
Tech. Rep. SRC RR 149, Digital Equipment Corp., Systems Research Center (1998)

2. Antignac, T., Le Métayer, D.: Privacy architectures: Reasoning about data min-
imisation and integrity. In: Proc. of The 10th International Workshop on Security
and Trust Management, STM’14. pp. 1–16 (2014)

3. Antignac, T., Le Métayer, D.: Privacy by design: From technologies to architectures
- (position paper). In: Annual Privacy Forum (APF). pp. 1–17 (2014)

4. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE
Symposium on Security and Privacy, Proc. of SSP’08. pp. 202–215 (May 2008)

5. Barth, A., Datta, A., Mitchell, J., Nissenbaum, H.: Privacy and contextual in-
tegrity: framework and applications. In: Security and Privacy, 2006 IEEE Sympo-
sium on. pp. 15 pp. –198 (may 2006)

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI series
in Software Engineering, Addison-Wesley, 3rd edn. (September 2012)

7. Becker, M.Y., Malkis, A., Bussard, L.: A practical generic privacy language. Infor-
mation Systems Security 6503, 125–139 (2011)

8. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8, 18–36 (February 1990)

9. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435–487 (Dec 2009)

10. Delaune, S., Ryan, M.D., Smyth, B.: Automatic verification of privacy properties
in the applied pi-calculus. In: IFIPTM’08: 2nd Joint iTrust and PST Conferences
on Privacy, Trust Management and Security. vol. 263, pp. 263–278. Springer (2008)

11. Dong, N., Jonker, H.L., Pang, J.: Analysis of a receipt-free auction protocol in the
applied pi calculus. In: Formal Aspects in Security and Trust. pp. 223–238 (2010)

12. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, paperback edn. (jan 2004)

13. Fournet, C., Abadi, M.: Mobile values, new names, and secure communication.
In: In Proceedings of the 28th ACM Symposium on Principles of Programming,
POPL’01. pp. 104–115 (2001)

14. Fournet, C., Abadi, M.: Hiding names: Private authentication in the applied pi
calculus. In: Software Security, Theories and Systems, Lecture Notes in Computer
Science, vol. 2609, pp. 317–338. Springer Berlin Heidelberg (2003)

15. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
21(8), 666–677 (Aug 1978)

16. Jafari, M., Fong, P.W., Safavi-Naini, R., Barker, K., Sheppard, N.P.: Towards
defining semantic foundations for purpose-based privacy policies. In: Proceedings
of the first ACM conference on Data and application security and privacy. pp.
213–224. CODASPY ’11, ACM, New York, NY, USA (2011)

17. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi
calculus. In: In Proc. 14th European Symposium On Programming (ESOP’05),
volume 3444 of LNCS. pp. 186–200. Springer (2005)

18. Li, X., Zhang, Y., Deng, Y.: Verifying anonymous credential systems in applied pi
calculus. In: Proc. of the 8th International Conference on Cryptology and Network
Security. pp. 209–225. CANS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

19. Meadows, C.: Formal methods for cryptographic protocol analysis: emerging issues
and trends. Selected Areas in Communications, IEEE 21(1), 44 – 54 (jan 2003)

20. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts i and ii.
Information and Computation (September 1992)

21. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1-2), 85–128 (January 1998)

22. Ryan, M.D., Smyth, B.: Cryptology and Information Security Series, vol. 5, chap.
Applied pi calculus, pp. 112–142 (2011)

	Privacy by Design: On the Conformance Between Protocols and ArchitecturesThe final publication is available at link.springer.com (URL not yet available).
	1 Introduction
	2 Architecture Level
	3 Protocol Level
	3.1 Syntax of the Modified Applied -Calculus
	3.2 Semantics of the Modified Applied -Calculus

	4 From Protocols to Architectures
	5 Related Works
	6 Conclusions and Future Works
	Acknowledgements.

