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Abstract. In this chapter we give a systematic overview over Virtual Reality
(VR) and Augmented Reality (AR) in underwater settings and suggest several fu-
ture applications. Based on a novel classification scheme we illustrate the broad
range of available and future implementation options. Whilst we find a variety of
previous work on creating and using virtual underwater worlds, quite fewexam-
ples of real underwater settings exist up to now. Thus, we concentrate on this new
category, sketch attractive application areas that go beyond entertainment, and
derive requirements for Underwater Mixed Environments (UWME). Combined
with a short summary on relevant aspects of underwater optics, we formulate
potential topics of future research to overcome current limitations of UWME.
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1 Introduction to Underwater Mixed Environments

1.1 Underwater setting as an example of an unconventional environment

There has been minimal research on the general aspects of unconventional Mixed En-
vironments [8]. In our context, conventional means that we are in a typical lab or office
environment - or even outside in the landscape. In any case wehave air as the surround-
ing medium for the display, the interaction devices and the user. An example of an
”‘unconventional Mixed Environment would be an underwatersetting, where air is re-
placed by water. This environment creates significant challenges for conventional mixed
environment technologies, such as optics, robust tracking, wireless communication, and
user interaction.

There is a growing awareness that the seven seas will play a prominent role as
a source of energy, food and minerals. Even the deep sea areasare already subject
to intense usage by the oil and gas industry in some areas. This development leads
to a number of research and business activities in sub-sea environments. As in other
challenging environments, Mixed Reality could be a means tosupport the users via
assistance, guidance or training applications.
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1.2 Classification scheme

We now present a classification scheme that allows us to distinguish different types of
Underwater Mixed Environments (UWME). It is derived from analyzing the spectrum
of available and future applications and uses the level of reality compared to a real-life
underwater world as a second dimension. It reaches from a high degree of authenticity,
i.e. the mixed reality equipment is used to mimic a typical underwater environment,
over a mid level, where the real world is augmented, enhancedor maybe simplified
to a minimum level, where we do not have any objects of an underwater world. The
following Fig. 1 illustrates the classification scheme and gives examples for typical
applications in the various categories. It is inspired by Milgrams well-known Virtuality
Continuum [50] but using the specific distinction between real and virtual water on the
x-axis.
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Fig. 1. Classification scheme for Underwater Mixed Environments

1.3 Previous work on virtual or augmented underwater worlds

In the literature there are several examples for virtual underwater worlds designed for
entertainment or education: Virtual Oceanarium [28], the SAP - Swimming Across
the Pacific installation [17], the Virtual Exploration of Underwater Sites [16], [33] or
the immersive virtual aquarium installation [40]. They allpresent a virtual underwater
world that can be explored with typical VR interaction. The main focus is on a real-
istic experience of the scenery and specific aspects of interaction. The SAP project is
the only one that reflects one important aspect of underwaterenvironments: the lack of
gravity that allows the user to float in the medium.
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Similar work can be found in projects with a background in training for underwater
operations in a virtual environment. The focus of the projects is set on a realistic (or
at least plausible) behaviour of the technical objects or processes and a sound physical
model of the operation. Typical work in this area is presented for underwater welding
[69], for training of remotely operated vehicle (ROV) operators [26] or safety proce-
dures for divers [42]. Sometimes those systems can also use real-time input of sensors
and create a situational awareness for safe ROV operation [46], [23], [30]

We find a related focus in the group of VR systems that are used in the phase of
product development for underwater equipment. Obviously we need a high level of
physical correctness of the simulation and less visual quality. Representatives for this
research work are [67] for a forward looking sonar or [68] dealing with virtual tests of
autonomous underwater vehicles.

However, there are few systems actually being used in a real underwater environ-
ment. The following examples adapt Augmented Reality hardware to be used in an
underwater setting for entertainment purposes: the DOLPHYN-based game[9], the AR-
enriched tele-operation of a ROV [19], or the AREEF - Augmented Reality for Water-
based Entertainment, Education and Fun [53].

The next section will introduce several application areas for what we call Under-
water Mixed Environments. Those application areas cover a spectrum from diver assis-
tance over astronaut training up to rehabilitation. After that we go into the technical as-
pects of UWME, summarize relevant physical basics and describe concrete challenges
that arise from the liquid medium.

2 Driving Applications

As briefly touched upon in the first section, there are variousapplications that depend on
Underwater Mixed Environments. We concentrate on three categories of the left column
of Fig. 1 and present an important application area for each row: one biological (marine
research), one industrial (ship inspection) and one medical (rehabilitation) in detail.
Other useful application areas such as astronaut training,where the water simulates
zero gravity are not discussed here but would lead to similarchallenges.

2.1 Marine Research

Use Cases.While typical VR installations are designed for human users,there are also
some examples for animal users. Empirical studies - especially in behavioral science
- have been published for example with honeybees [1] or moths[31]. This kind of
experiment is also useful in studying fish or other aquatic animals. For that purpose one
or more displays are attached to an aquarium and camera systems are used to track and
observe the animal in the underwater setting. Using the tracking information, the virtual
world is updated according to the reaction of the animal. Those immersive virtual fish
tank applications (from the perspective of the fish in the tank) should not be confused
with the fish tank VR metaphor [70] defined as ”a stereo image ofa three dimensional
(3D) scene viewed on a monitor using a perspective projection coupled to the head
position of the observer”.
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A relatively simple setup has been used to study the startle response behavior of fish
according to a visual stimulus [13]. It uses one screen displaying a growing ellipse as
a simplified presentation of an approaching fish. A mirror wasmounted at an angle to
a side of the tank, so one camera could be used to compute the 3Dposition of the real
fish in the tank (see Fig. 2). Similar work can be found studying the larval zebra fish
prey capture [64].

Fishtank

Camera

Mirror

Screen

Fig. 2. Immersive VR setup for studying fish behavior [13]

A more elaborated underwater virtual environment, the Sub Sea Holodeck, uses
seven displays with 14 megapixels to produce a high resolution visual aquatic environ-
ment [37] (see Fig. 3). The setup has been used in context of a project to study how
cephalopods sense, respond to, and camouflage themselves ina marine environment.

The system can replay videos that are recorded with an omnidirectional underwater
camera. This feature is used to copy real underwater scenarios to the VR environment.
Alternatively, the surrounding screens and projectors candisplay the output of a render-
ing system to synthesize a controlled and reproducible visual environment.

We can summarize, that this kind of VR-enabled fish tank is a very flexible and
powerful means to support research of marine biologists andneuro scientists. It allows
the scientist to study the behaviour of the aquatic animals in a controlled environment
and the setup can easily be instrumented with various sensors to measure the reaction.

Specific Requirements.Even though some examples use a quite elaborated model of
the virtual underwater environment, most experiments showthat a quite simple repre-
sentation (basic shapes and changing ambient color) works quite well to stimulate the
animals. While the presentation can be kept simple, the tracking of the response of the
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(a)                                                                                                  (b) 

Fig. 3. The Sub Sea Holodeck with two different scenarios [37]

animals is the challenging part here: many experiments do not only measure the fish’s
position and orientation with a high frequency sometimes even eyetracking is used to
characterize the reaction of the aquatic animals.

2.2 Underwater Ship Maintenance and Inspection

Use Cases.In this subsection we discuss a list of applications, related to Underwater
Ship Maintenance and Inspection (UWSMI), which seem appropriate for challenging
the concept of Underwater Mixed Environments (UWME). It is just one area of possible
application of Mixed Reality in the maritime industry. Additional use cases not directly
linked to the underwater setting are described for example in [47] or [66].

Our view is that UWSMI can be used for boosting the research in the areas of
Virtual-, Augmented- and Mixed-Reality (VAMR) environments and, eventually, im-
proving drastically the technological status and the quality of services provided in the
context of this specific application with high industrial impact.

A non-exhaustive list of UWSMI activities may include:

– Underwater hull cleaning,
– Propeller polishing
– Underwater welding
– Applying adhesives suitable for underwater bonding
– Materials underwater for both naval and commercial customers
– Propeller crack detection
– Plate thickness readings
– Underwater surveys in lieu of dry docking
– Impact damage inspection
– Security inspections
– Sea-valve inspections
– Oil- and liquefied-gas-terminal jetty inspections
– Hull-potential surveys
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The effect on the above activities in the operational and economic efficiency of a
ship as well as its safety is important. For example, fuel saving is the major reason for
making underwater hull cleaning an integral part of plannedmaintenance, especially in
the era of (super)-slow-steaming. For example, marine engines manufacturer Ẅartsil̈a
[71], calculates that fuel consumption can be reduced by 58%by reducing cargo ship
speed from 27 knots to 22 knots while the large container shipEmma Maersk can save
4,000 metric tons of fuel oil on a Europe-Singapore voyage byslow steaming [39]. At
a typical USD 600-700 per tonne, this works out to USD 2.4-2.8million fuel savings
on a typical one-way voyage.

In the maritime environment setting, concentration of marine fouling can lead to
increased resistance, resulting in a detrimental impact ona vessel’s hydrodynamic per-
formance and hence the relationship between speed, power performance and fuel con-
sumption. Fouling, particularly in the case of a prolific buildup of hard or shell fouling
like barnacles or tubeworm, can cause turbulence, cavitation and noise, frequently af-
fecting the performance of, e.g., sonars, speed logs and other hull-mounted sensors.
Marine fouling is considered as a global-scale problem in marine systems, costing the
U.S. Navy alone $1 billion per annum [14]. Ship-hull cleaning is performed in the dock-
yard when the ship has her official inspection each year or by divers underwater, while
the ship docs at the port. Though the regular or intermediateinspections take place
each year, it is desirable to have frequent ship hull cleaning in order to keep good fuel
efficiency for securing lower transportation costs andCO2 emission.

Analogously, the operational need for polishing a propeller stems from the fact that
a super smooth surface is inhospitable to marine organisms as well as being beneficial to
the efficiency of the propeller. In this connection, provided the service is done properly,
the cost of the underwater propeller polish will only be a small proportion of the fuel
savings.

UWME could be used for training divers in nearly realistic conditions by means of
augmentation in their diving mask. Such an environment could be based on a towing-
tank-like facility endowed with immersed physical mock-ups of full-scale parts of the
ship hull and, if necessary, its propeller blades and appendages, as well as an AR in-
terface capable to superimpose on them computer generated or photographic images.
Such an installation would readily inherit from its physical counterpart, the surround-
ing medium and the effects of buoyancy, viscosity and free-surface waves while offer-
ing the trainees with a realistic perception of their working environment regarding its
lighting (refraction, absorption and scattering by the water particles), water turbidity,
spatial complexity and limitations (hull stern with its propeller), and the activities to be
performed on it. One could bargain limited perception losses, e.g., buoyancy in fresh
versus sea water, in favor of effective wireless communication, since it is known (see,
e.g. [38]) that conventional RF propagation works poorly insea water due to losses
caused by its high conductivity (typically 4 S/m) versus that of fresh water (0.01 S/m).

In addition, UWME could be useful in the context of design, construction, testing
and approval of mechanisms devised by the industry for supporting ship-hull mainte-
nance and inspection [52].
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On the basis of the above and the fact that VAMR technologies have been already
acknowledged as a useful mediator for challenging maintenance services in maritime
applications (see, e.g. [65], [44]), one could reasonably expect that the current and
emerging industrial needs should have already led to coordinated actions for testing
the feasibility and efficiency of UWME for supporting UWSMI. Nevertheless, search-
ing the pertinent literature the reader gets the impressionthat research in the area of
UWME-for-UWSMI, with the exception of scarce high-quality attempts (e.g., [51]) has
not yet grasped the threshold for being characterized as an emerging research area, even
more, an emerging technological area.

Specific Requirements.For offering a realistic training environment, UWME should
be enhanced with additional functionality regarding its physical components, enabling,
e.g., the generation of currents, fluid rotation, turbulence effects, etc. Furthermore, the
AR interface could be enriched with haptic devices for providing the user with a tactile
feedback for improving the degree of realistic perception of activities that involve the
operation of devices controlled by the user and acting on theunderwater part of the ship
hull and its appendages, e.g., operating a cleaning machineat the proper pressure level
for removing mild or persistent fouling from a variety of coatings, including the new
low-surface- energy coatings being introduced into service.

Furthermore, the following requirements can be derived from those industrial use
cases for UWME:

– The systems must be robust enough to be used in the harsh environment of profes-
sional divers.

– The alignment of virtual objects and real objects (in an AR setup) must be highly
accurate.

– The training environment should be easily adaptable to the concrete task and the
necessary tools in order to cover a broad range of use cases.

2.3 Rehabilitation

Another of the main driving applications for UWMEs is rehabilitation. In this applica-
tion there is a significant need for Virtual Environments (VEs) that work underwater.
Water-based exercise is one of the primary physical therapist recommended rehabilita-
tion approaches for many types of injuries and disabilities.

Background.

Water-based Physical Therapy.Water-based (aka aquatic) Physical Therapy (WPT)
has been used for many years to rehabilitate individuals with a variety of disabling
problems. WPT utilizes the physical properties of water, such as providing resistance
when moving through it. These properties enable a wide rangeof positive effects in
therapy and exercise. The water offers buoyancy and hydrostatic pressure to provide
additional support for the patient when performing the exercises and reduces the risk
of falls. Thus, aquatic therapy and exercise can be of great benefit to balance impaired
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populations, such as the elderly [22]. Moreover, water can aid in the body’s cooling
process, which is especially important for MS patients [29], who commonly suffer from
an exacerbation of symptoms due to overheating. Similarly,WPT has been used for
many years to benefit individuals with other neurological problems, such as Parkinson’s
Disease [72].

Virtual Rehabilitation. Research suggests that VR and AR technology can offer new
opportunities and methods for neurorehabilitation [20]. Typically VR or AR can be
used to immerse a patient in a safe environment to practice rehabilitation exercises [61],
such as hand [49], [56] and motor [57] rehabilitation in stroke and gait rehabilitation in
Parkinson’s Disease [54].

For example in MS rehabilitation, rhythmic audio signals and a moving checker
patterned floor [5] can be used effectively for feedback. Other researchers [60] focused
on haptics for upper extremity rehabilitation in MS. These approaches had only prelim-
inary evaluations and have never made it to market, but they were shown to improve
movement while in use. This suggests that VR approaches could be effective in gait
rehabilitation for MS, but none of the prior work has developed VR systems that could
be used in conjunction with water-based therapies.

Rehabilitation Games.VR Rehabilitation games have not been completely incorpo-
rated into common therapy practice, but they do seem to have significant benefits to
rehabilitation. For example, a VE is not subjected to the dangers and limitations of the
real world [10], [21], which expands the types of exercises that patients can practice,
while still having fun. In general, research suggests that VR games have measurable
benefits for rehabilitation effectiveness [21] and motivation [10].

There has been recent research on deriving design guidelines for VR rehabilitation
games based on results of empirical studies. Alankus et al.’s [2] guidelines include:
simple games should support multiple methods of user input,calibrate through example
motions, ensure that users’ motions cover their full range,detect compensatory motion,
and let therapists determine difficulty. There is a need for more focused game design
research and development for specific populations [27]. However, there are no current
guidelines on how presence should be considered in rehabilitation game design.

User Descriptions. In the context of rehabilitation we have to distinguish between two
important user groups that have different roles in the rehabilitation sessions.

Patients: Since water-based exercise is recommended for many different injuries/disabilities,
the potential patient population for this application is widely diverse. Here, we will
consider an example population - multiple sclerosis (MS) patients. MS is a degenera-
tive neurological disease that affects 400,000 people in the U.S. and over 2.1 million
worldwide [59].The most common form of MS is relapsing-remitting, in which patients
experience acute attacks followed by periods of remission.During these remission pe-
riods, physical therapy has been shown to most effective in the remission periods and
can help counter the residual effects of the attacks [58]. Therapists often augment the
diminished proprioceptive feedback with other modalitiesof feedback, such as using
mirrors to provide visual feedback [43].
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Balance and gait (i.e. walking patterns) abnormality is oneof the most prevalent
symptoms that MS patients experience with 85% of patients complaining of gait and
balance [4]. Gait problems are exacerbated by other MS related symptoms such as fa-
tigue, decreased reaction time, and attention deficits, especially in dual tasks such as
walking while talking [32]. One of the most common issues experienced in MS is ex-
acerbation of all MS symptoms when body temperature is increased. This makes reha-
bilitation and exercise significantly more difficult and reduces the benefits. To counter
this overheating effect, therapists generally recommend water-based exercise, because
it offers effective resistance training while keeping the body cool. It also reduces the
risk of fall due to balance deficits, which are very common in MS.

Physical Therapist: For water-based rehabilitation, physical therapists arefrequently
present to help guide the patient and maximize the efficacy ofthe workout, especially
at the beginning of a rehabilitation program. A physical therapist first creates a person-
alized set of exercises based upon the needs of a patient. Then they teach the patient to
perform these exercises correctly, offering visual, auditory, and haptic feedback to the
patients as needed. Therapists often rely both on patient history and visual assessment
of the patients movement to drive their feedback. Thus, being able to visually assess
patients in real time is critical for a physical therapist toeffectively guide the patient
and provide additional motivation.

Use Case.This use case considers a therapy session in which both the physical thera-
pist and the patient are working together in the pool. The patient may be playing a game
a rehabilitation game in a head mounted display, and is experiencing many virtual stim-
uli. To integrate exercise, the patient runs back and forth along the length of a lane
while carrying water weights - large dumbbell shaped, air-filled objects that provide
additional resistance when pushed through the water. The therapists aim is to assess the
movements of the patient and provide corrective feedback through multiple modalities:
verbal, visual, and haptic. Moreover, the therapist may also want to control some of the
game events and difficulty level in order to tailor the game tothe individual patients
needs.

The therapist may need to be immersed and embodied inside theVE to provide
effective multimodal feedback to the patient (i.e., otherwise the therapist would be un-
aware of what the patient was actually seeing). To facilitate this, the therapist will have
a tracked egocentric view similar to the patient, but will also have a heads up display
(HUD) that can provide additional information to the therapist. For example, the ther-
apist can monitor the patients physiological data, such as heart rate. The periphery of
the display may need to be unblocked due to the therapist’s need to interact with the
real world. For example, the therapist may wish to observe and correct the patients
real movements outside of the VE. Moreover, depending on thepatients progress and
frustration level, the therapist may need to control the difficulty of the game or trigger
events (e.g., boss fights).

Specific Requirements.
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Safety Requirements.One of the primary concerns of any VE system for rehabilitation
is user safety, which is arguably even more important in an underwater system. For a
population with disabilities, who may have issues such as balance deficits or vertigo,
there is an increased chance of falls, even in water. Considering the immersiveness of
the system, the user may be surprised when they fall and theirhead is submerged in the
water, which could result in an increased chance of aspirating water. Moreover, due to
users potential vestibular deficits, users may have difficulty reorienting themselves to
above the water line. Thus, the user may need additional visual and/or auditory feedback
to help them reorient themselves. In general, it is advised for someone to follow behind
or beside the user to ensure their safety and to help prevent falls. Mobile harnesses such
as those used in gait rehabilitation, could be used, but theywill need to be specifically
designed for underwater usage or otherwise they could make fall recovery actually more
difficult.

Whenever electronics are submerged in water, there is alwaysthe safety concern
of electrocution. Thus, it is advisable to waterproof powered equipment and minimize
active instrumentation of the user. For example, for optical tracking of the user, passive
tracking markers or markerless tracking will be the safer choice because there is no
chance of electrocution.

Real Environment Requirements.One potential requirement for the real environment -
the pool - is its depth. The user should be able to stand in the pool with their head above
water. Deeper pools would increase the danger caused by underwater disorientation if
the users could not feel the bottom of the pool. Fortunately most gym pools are designed
to be about 4 or 5 ft deep. If only a deep pool is available, the proposed UWME could
be combined with a traditional pool lift - a powered mechanical arm with a seat on the
end, which is strapped to users to safely lift them in and out of the pool.

Display Requirement.

1. If a head mounted display is used, obviously it must be waterproof.
2. If the user is required to use the length of the pool, it should be untethered so that it

does not interfere with the users movement. However, another potential approach is
to use an endless pool , which is analogous to a treadmill in air-based exercise. The
endless pool is small 15ft pool with a wave generator on one side and sometimes
a waterproof treadmill on the floor. This would enable them torun in place in one
direction while they appear to be moving in the VE. The VE as described in the
Serpents treasure use case would have to be changed to enablethe user to always
move in the same direction (e.g., one long hallway), unless the endless pool was
modified with multiple wave generators, analogous to an omnidirectional treadmill.
Another option is to use the aforementioned pool lift, whichhypothetically could
be modified to control orientation as well.

3. While not a strict requirement, it may be beneficial for the display to be see through.
The purpose of this would be to give users more feedback aboutthe water level,
which would enable them to reorient themselves more effectively in the event of a
fall. In many cases, there may be a trade-off between safety and the immersiveness
of the system.
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Interface Requirements.

1. All interfaces must be waterproof.
2. Interfaces should not interfere with movement, unless intentionally designed for

that purpose. E.g., it would be detrimental if an interface became tangled with the
users legs. On the other hand, if the interface was integrated with the water weights,
for example, it would technically interfere with movement,but for the purpose of
increased resistance training.

3. Standard interfaces with buttons should be affixed to the user. If the user interacts
with a handheld device and drops it, it would be potentially difficult to retrieve if it
fell to the bottom of the pool or floated away.

3 Research Challenges

After looking in quite different usage areas we will now derive the research challenges
that arise from those novel applications. There we distinguish between the technical
challenges of the underwater setting and the human factor aspects.

3.1 Technical Challenges

Optics. With regard to the display of close to reality virtual underwater environments
on screen, several aspects have to be considered, which strongly differ from conditions
in air, especially optics and visibility. An additional aspect to be discussed is character-
istic illumination artifacts.

The first aspect is the occurrence of refractive effects due to the different propaga-
tion speed of light in water and in air. This property of watercan be best described by
its refractive index. Water has to be considered as a transparent object in the rendering
pipeline, altering the direction of light rays emanating from illuminated objects inside
the water body.

In the following, the three main viewer locations are presented with regard to refrac-
tion. These comprise a viewer looking into water from outside the water body, vision
in water and a viewer looking from inside the water body to above the surface. A light
ray is refracted at every boundary between participating media with different refractive
indexes on its way. This can be a direct contact of the viewer’s eyeball with water or
one of the more common cases of looking through the surface ofthe water itself or any
kind of water-glass-air transition. The glass can be a waterproof protecting surface like
a side of an aquarium or a divers diving goggles. As the refractive index of air is close
to zero and the glass is optional and mostly thin, the most significant quantity is the
refractive index of water. It is commonly known to be close to1.33.

The computation of refraction can differ severely due to thecomplexity of the re-
spective surface. Planar surfaces can be represented by a single surface normal. A planar
refractive surface always leads to non-linear distortionswith increasing incident angles
towards this normal. The computation of close to reality distortions gets even severe
if one is looking through a naturally wavy water surface. Such a more complex sur-
face cannot be represented by a single surface normal for refraction computation. A
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commonly realizable refractive effect of water is a magnification of objects. This mag-
nification is a result of objects being seen closer to the observer as they are in reality.
For perspective projection this means that points on a virtual object, non-ambiguously
related to points on the real object, seem to be mapped (see Fig. 4). This virtual location
of object points is proposed to lie exactly on the refractivesurface’s normal through the
real object point as partly stated in [7] and experimentallyconfirmed by [25].

Fig. 4.Refraction of a light ray emanating from object pointO on its way into the camera and the
corresponding virtual pointV

A special phenomenon called Snell’s window or optical manhole occurs, when the
viewer is looking from inside the water body to above the surface [48]. In contrast
to the aforementioned cases, the refractive index gets bigger at the transition from air
to water. Hence, light rays get compressed to the circular region of a bottom of a view
cone. Regions on the outside of this view cone are either darkor recognizable reflections
of the underwater environment.

The second aspect differing from conditions in air is visibility underwater. Its pe-
culiarity is comparable to haze in air with an additional characteristic color cast. The
color cast is a result of the water’s capability to absorb light wavelength-dependent.
While longer wavelengths of visible light (red to yellow) areabsorbed after reaching
only a few meters in water, the shorter wavelengths (green toblue) penetrate the wa-
ter body the most. This leads to the typical water color. Differences amount due to the
local constituents of water. Besides the absorption capabilities of water itself, local con-
stituents, with their own absorption capabilities, contribute to the overall absorption of
the water body. Hence, locally different color casts arise,like the very blue water color
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in the Red Sea and on the contrary, the green color of the Baltic Sea. Some organic
constituents lead to an observable, continuous flow called marine snow.

This restricted penetration of light in water is called attenuation. Besides absorption,
attenuation is influenced by the scattering capabilities ofthe water body. It comprises
diffraction and refraction. Scattering can be further divided into forward scatter and
backscatter [36]. Its effects can be compared to using car headlights in fog. Follow-
ing [36], image formation is a process of a linear superposition of backscatter, forward
scatter and a direct component reaching the imaged objects from the light source. This
model for image formation, or any other model considering all the aforementioned fac-
tors influencing underwater visibility, has to be taken as a basis for rendering close to
reality underwater images.

The last aspect representing a difference to conditions in air is the appearance of
characteristic illumination artifacts. Wavy water surfaces can lead to light refractions
that converge and result in so called sunlight flicker on the bottom of the sea. These are
bright light patterns in an irregular and fast varying arrangement.

Obviously, there are various factors that heavily influencethe perception of images
in underwater settings. We do not only have to take this in consideration for presenting
virtual objects to the user but also when analyzing or interpreting underwater images -
as we need it for example in the case of optical tracking.

Wireless communication. In conventional virtual environments we find a variety of
interaction concepts, such as gesture based interaction, flight sticks, Personal Interac-
tion Panel or mobile devices (e.g., smartphones) for navigation and manipulation in the
virtual world. Most of the techniques rely on 6 degrees of freedom (DOF) tracking of
devices as an essential part of picking objects or describe gestures. In underwater set-
tings, electromagnetic tracking will not work at all and optical tracking is much more
difficult, as described in the previous section. Furthermore, Bluetooth will not work
and WiFi signal strength is decreased due to the attenuationof the radio waves. One
can easily verify this with a waterproof smart phone.

Tracking. Besides the limitations in wireless communication, we alsohave the prob-
lem of tracking. The positions of the Global Positioning System cannot be used and
magnetic tracking systems may not work effectively. So we can only rely on optical
or acoustic systems for tracking the user - with all the drawbacks of their robustness,
fidelity and latency in underwater settings. Especially therobustness against changing
light conditions remains a challenge for practical use in outdoor settings [53].

Harsh Conditions. If we put technical equipment underwater, we have to deal with
some obvious technical challenges:

– We have to carefully shield the sensitive parts (especiallyall electric and electronic
components) against the water. Equipment that is protectedagainst the effects of
continuous immersion in water is classified as International Protection Marking
IPX8.



14 Uwe Freiherr von Lukas, John Quarles, Panagiotis Kaklis, and Tim Dolereit

– According to the depth of the water, we have to safeguard the technical systems
from the growing pressure.

– Equipment used in salty water has to be protected against corrosion.
– All materials that are exposed to (natural) water for a longer period will be subject

to marine biofouling. This will not be relevant for most of the parts of the equipment
but affects the optical parts such as displays or cameras.

3.2 Human Factors Challenges

Usability. Although usability guidelines for graphical user interfaces are very well
defined and 3D user interfaces and VRs design guidelines are becoming more well
defined, the usability of VEs underwater is not well understood. It is not clear if many
of the guidelines used in air-based environments will stillenable usable interfaces in an
underwater environment. Consider that the usability of air-based VEs has been studied
for over 30 years and is still being investigated as new interface and display technology
is developed. Thus, the challenge here is the amount of empirical work it will take to
derive usability guidelines for underwater VE interface design.

Ergonomics. As far as we know, there have not been any study of ergonomics for
underwater applications of Mixed Reality so far. Similar toconventional MR environ-
ments there are several challenges when we try to (partially) replace the real world by
a virtual world that does not have the same resolution and consistent behaviour. Due to
the fact that especially the tracking problem is much harderto solve in an UWME and
that wireless communication typically has more latency will make those studies even
more important.

Relative to the study of healthy users in VEs, users with disabilities have always
been significantly understudied. This is largely due to the variable nature of disabilities
and the limited numbers of users with disabilities, making it difficult to conduct studies
with a homogeneous population at an acceptable sample size.Moreover, it is unclear
how users with disabilities would interact with an underwater VE. We already know that
disabled persons may experience presence differently in anair-based VE. Thus, even if
it was known how healthy persons interact with underwater VEs and we had derived the
associated usability guidelines, it would be of minimal help towards understanding how
many users with disabilities interact with VEs underwater.That is, the wide variability
of disabilities will be a difficult challenge to overcome.

An additional challenge has been that VEs have traditionally been large installa-
tions, requiring the users with disabilities to come to a VE lab or rehabilitation clinic
to use the equipment. This has begun to change with the adventof inexpensive VE
hardware, such as the Microsoft Kinect and the Oculus Rift. However, with underwater
VEs, regardless of the advances in hardware, most people do not have a pool in their
backyard, which will require them to go to a local gym where the equipment can be
used.

In a sense, the underwater VEs could be difficult to access installations, much like
the high end VEs have been, thereby limiting their usage and study. Thus, the study of
underwater VEs will be challenging, due to the logistical issues with being co-located
with a pool.
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4 Towards implementation of UWME

4.1 Available building blocks

Controlling color cast. Depending on the setup and the application, we have the need
to correct or simulate water-induced color cast in context of a UWME. This allows us
to generate a realistic impression or improve the quality ofacquired images, e.g. for
optical tracking.

There are several algorithms to correct the color cast induced by the attenuation
of the light depending on the different wave lengths. They gobeyond a simple white
balance and take into account the physical behaviour of light in underwater settings
[34].

There a two possible solutions to integrate color cast correction in an UWME. First,
it can be used as an amplifier for the display module. With a knowledge of the distance
between underwater display and the user and some parametersof the medium we can
especially raise the red and yellow frequencies. Second it could be used at the recep-
tor side - either for a human being or a tracking system. Here we have to restore the
attenuated frequencies of the spectrum to restore the original color distribution.

Distortion Correction. Distortion correction for underwater images differs severely
from distortion correction in air. Distortion in air is a result of non-ideal projection
capabilities of real lenses. It is dependent on the type of lens used, ranging from wide-
angle, normal, to long-focus, all producing different amounts of distortion. Another
factor is the quality of manufacturing of the single lens or respectively the lens-system.
Distortion is most noticeable as radial effect producing pincushion to barrel distortions.

Besides radial distortion of real lenses, distortion in underwater imaging is addi-
tionally affected by a refractive interface. Light rays arerefracted on their way into
the camera (water-glass-air transition). This leads to noticeable distortions. The most
common refractive interfaces are flat or domed ports. Flat interfaces lead to effects like
radial distortion and the different refractive indexes of the participating media lead to
an unintended magnification of objects in water. Domed portsare supposed to elim-
inate effects of flat interfaces, leaving just the magnification problem. The possible
combination of lens type and interface type results in different non-linear distortions in
underwater imaging.

Distortion underwater is additionally affected by the position of the camera to the
refractive interface. For distortion correction, it is needed to compute the respective
incidence angle of every pixel’s ray. When this is known, a mapping with refractive
distortion compensation should be possible. This mapping has to be a combination with
in air distortion correction from camera calibration.

Underwater communication. Wireless communication based on high frequency radio
waves will not bridge more than 25 cm underwater due to the strong attenuation of
the waves [55]. This means that wireless connections such asWiFi or Bluetooth will
practically not work in an underwater setting. Acoustic waves have a long range in
water but suffer from high latency and poor bandwidth. As described in [62] a short
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range underwater acoustic channel can only transfer 20-50 kbps with a latency of ~300
ms. Furthermore, acoustic communication modems are error-prone in shallow waters.
For usage in the context of coupling an interaction device with the Mixed reality system
this would not be a good choice.

This makes optical connections the better choice. Althoughlimited to short dis-
tances and depending on the turbidity of the water, especially in blue/green light wave-
lengths, offer an adequate alternative [3]. The light propagates much faster and by this
avoids the high latencies. However, the optical communication needs a direct line of
sight which cannot be assured in interactive scenarios.

Physical protection. Protecting electrical, electronic or optical components for under-
water operation is a standard offer of specialized suppliers. The traditional way of using
waterproof housings for all the equipment to be used underwater is now complemented
by the concept of pressure neutral systems, where the components are embedded in sil-
icon. First research for this approach has been done in the 1970s [6] and it has a revival
now for the lightweight design of underwater vehicles [63].However, those housings
make the technical equipment more expensive and sometimes difficult to handle.

4.2 Future Research

As already discussed, we see plenty of useful application areas for UWME. However,
to exploit the potential of UWME for marine research, training, assistance and rehabil-
itation, we need further research in the following areas:

– Human factor research in UWME
– Usability of devices for underwater usage (displays, interaction etc.) that take into

account diving equipment and also people with disabilities
– Fast and accurate underwater tracking
– Reducing latency in underwater wireless communication
– Robust underwater equipment to set up UWME
– Systematic approaches for design, test and operation of UWME
– Reusable building blocks for fast implementation of UWME

In order to develop solutions that work in practice, it is absolutely necessary to
form interdisciplinary teams that combine the expertise ofvisual computing, the specific
application area and underwater technology
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