Skip to main content

Homecoming: A Multi-robot Exploration Method for Conjunct Environments with a Systematic Return Procedure

  • Conference paper
  • First Online:
Multi-Agent Systems (EUMAS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8953))

Included in the following conference series:

Abstract

The present work proposes a multi-robot exploration method for conjunct environments, based on one of the state-of-the-art algorithms. In many exploration missions, after the subject is found, it is beneficial if the discoverer robot returns back to the base station, in order to report, delivery or recharge. In addition, the exploration might need a long time to be finished or has to be done over and over. Returning back to the base station enables robots to get recharged, fixed, or even substituted with other robots. Furthermore, the equilibrium in task allocation to robots is this work’s other concern. The presented algorithm also reduces the maximum energy consumption of robots, as a good side effect. The efficiency of the proposed algorithm is demonstrated by providing simulation results for a variety of obstacle densities and different number of robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogge, J., Aeyels, D.: A novel strategy for exploration with multiple robots. In 4th International Conference on Informatics in Control, Automation and Robotics, pp. 76–83. INSTICC Press, Milan (2007)

    Google Scholar 

  2. Kleiner, A., Prediger, J., Nebel, B.: RFID technology-based exploration and SLAM for search and rescue. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4054–4059. IEEE, Beijing (2006)

    Google Scholar 

  3. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-theoretic approach to multi-robot mapping and exploration. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), vol. 4, pp. 3232–3238. IEEE (2003)

    Google Scholar 

  4. Bell, J., Elizabeth, F., Costilla, O.: Cooperation of Autonomous NXT Robots Using Bluetooth Wireless Technology (2013)

    Google Scholar 

  5. Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. Int. J. Robot. Res. 25(5–6), 431–447 (2006)

    Article  Google Scholar 

  6. Wang, Y., Alei, L., Guan, H.: Frontier-based multi-robot map exploration using particle swarm optimization. In: IEEE Symposium on Swarm Intelligence (SIS), pp. 1–6. IEEE (2011)

    Google Scholar 

  7. Choset, H.: Coverage for robotics–a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)

    Article  Google Scholar 

  8. Zheng, X., Sven, K., Kempe, D., Jain, S.: Multirobot forest coverage for weighted and unweighted terrain. IEEE Trans. Robot. 26(6), 1018–1031 (2010)

    Google Scholar 

  9. Even, G., Naveen, G., Jochen, K., Ravi, R., Sinha, A.: Min–max tree covers of graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

    Google Scholar 

  10. Sipahioglu, A., Kirlik, G., Parlaktuna, O., Yazici, A.: Energy constrained multi-robot sensor-based coverage path planning using capacitated arc routing approach. Robot. Auton. Syst. 58(5), 529–538 (2010)

    Article  Google Scholar 

  11. Yazici, A., Gokhan, K., Osman, P., Aydin, S.: A dynamic path planning approach for multi-robot sensor-based coverage considering energy constraints. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5930–5935 (2009)

    Google Scholar 

  12. Mandal, P., Barai, K.R., Maitra, M., Roy, S., Ghosh, S.: Autonomous robot coverage in rescue operation. In: International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5 (2013)

    Google Scholar 

  13. Batsaikhan, D., Janchiv, A., Lee, S.-G.: Sensor-based incremental boustrophedon decomposition for coverage path planning of a mobile robot. In: Intelligent Autonomous Systems, vol. 12, pp. 621–628. Springer, Heidelberg (2013)

    Google Scholar 

  14. Senthilkumar, K.S., Bharadwaj, K.K.: Multi-robot exploration and terrain coverage in an unknown environment. Robot. Auton. Syst. 60(1), 123–132 (2012)

    Article  Google Scholar 

  15. Micael, S.C., Rocha, R.P., Figueiredo, C.M., Luz, J.A., Ferreira, N.M.F.: Multi-robot foraging based on Darwin’s survival of the fittest. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 801–806 (2012)

    Google Scholar 

  16. Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for robot swarm foraging. In: Distributed Autonomous Robotic Systems, pp. 417–430. Springer, Berlin (2013)

    Google Scholar 

  17. Ducatelle, F., Di Caro, G.A., Carlo, P., Francesco, M., Luca, G.: Communication assisted navigation in robotic swarms: self-organization and cooperation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4981–4988 (2011)

    Google Scholar 

  18. Simmons, R., David, A., Wolfram, B., Dieter, F., Mark, M., Sebastian, T., Håkan, Y.: Coordination for multi-robot exploration and mapping. In: AAAI/IAAI, pp. 852–858 (2000)

    Google Scholar 

  19. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  20. Vazquez, J., Chris, M.: Distributed multirobot exploration maintaining a mobile network. In: Proceedings 2nd International IEEE Conference on Intelligent Systems, vol. 3, pp. 113–118 (2004)

    Google Scholar 

  21. Low, K.H., Chen, J., Dolan, J.M., Chien, S., Thompson, D.R.: Decentralized active robotic exploration and mapping for probabilistic field classification in environmental sensing. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, vol. 1, pp. 105–112 (2012)

    Google Scholar 

  22. Hawley, J., Zack, B.,: Hierarchical distributed task allocation for multi-robot exploration. In: Distributed Autonomous Robotic Systems, pp. 445–458. Springer, Heidelberg (2013)

    Google Scholar 

  23. Wawerla, J., Vaughan, R.T.: A fast and frugal method for team-task allocation in a multi-robot transportation system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1432–1437 (2010)

    Google Scholar 

  24. Rooker, M.N., Birk, A.: Multi-robot exploration under the constraints of wireless networking. Control Eng. Pract. 15(4), 435–445 (2007)

    Article  Google Scholar 

  25. Fazli, P., Davoodi, A., Mackworth, A.K.: Multi-robot repeated area coverage. Auton. Robots 34(4), 251–276 (2013)

    Article  Google Scholar 

  26. Tanoto, A., Rückert, U.: Local navigation strategies for multi-robot exploration: from simulation to experimentation with mini-robots. Proc. Eng. 41, 1197–1203 (2012)

    Article  Google Scholar 

  27. Mei, Y., Lu, Y.-H., Hu, Y.C., Lee, C.S.G.: Deployment of mobile robots with energy and timing constraints. IEEE Trans. Robot. 22(3), 507–522 (2006)

    Article  Google Scholar 

  28. Mei, Y., Lu, Y.-H., Lee, C.S.G., Hu, Y.C.: Energy-efficient mobile robot exploration. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA, pp. 505–511 (2006)

    Google Scholar 

  29. Stirling, T., Dario, F.: Energy-time efficiency in aerial swarm deployment. In: Distributed Autonomous Robotic Systems, pp. 5–18. Springer, Heidelberg (2013)

    Google Scholar 

  30. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)

    Article  Google Scholar 

  31. Jaimes, A., Kota, S., Gomez, J.: An approach to surveillance an area using swarm of fixed wing and quad-rotor unmanned aerial vehicles UAV (s). In: IEEE International Conference on System of Systems Engineering, SoSE 2008, pp. 1–6 (2008)

    Google Scholar 

  32. Koveos, Y., Athanasia, P., Efthymios, K., Vasiliki, R., Konstantinos, K., Athanasios, T., Tzes A.: An integrated power aware system for robotic-based lunar exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 827–832 (2007)

    Google Scholar 

  33. Kovács, T., Pásztor, A., Istenes, Z.: A multi-robot exploration algorithm based on a static bluetooth communication chain. Robot. Auton. Syst. 59(7), 530–542 (2011)

    Article  Google Scholar 

  34. Cox, T.F.: A method for mapping the dense and sparse regions of a forest stand. Appl. Stat. 28, 14–19 (1979)

    Google Scholar 

  35. Christensen, P.R.: The spatial distribution of rocks on Mars. Icarus 68(2), 217–238 (1986)

    Article  Google Scholar 

  36. Golombek, M.P., Haldemann, A.F.C., Forsberg‐Taylor, N.K., DiMaggio, E.N., Schroeder, R.D., Jakosky, B.M., Mellon, M.T., Matijevic, J.R.: Rock size‐frequency distributions on mars and implications for mars exploration rover landing safety and operations. J. Geophys. Res. Planets (1991–2012) 108(E12) (2003)

    Google Scholar 

  37. o’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  38. Choset, H.M. (ed.): Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Massachusetts (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shervin Ghasemlou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghasemlou, S., Mohades, A., Shangari, T.A., Tavassoli, M. (2015). Homecoming: A Multi-robot Exploration Method for Conjunct Environments with a Systematic Return Procedure. In: Bulling, N. (eds) Multi-Agent Systems. EUMAS 2014. Lecture Notes in Computer Science(), vol 8953. Springer, Cham. https://doi.org/10.1007/978-3-319-17130-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17130-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17129-6

  • Online ISBN: 978-3-319-17130-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics