Skip to main content

Design of a Novel Adaptive Indoor Air Quality Control for Co-learning Smart House

  • Conference paper
  • First Online:
Sensor Systems and Software (S-CUBE 2014)

Abstract

The use of multivariate methods is popular in indoor air quality applications such as prediction of indoor air quality, ventilation control and classify comfort Indoor air quality data used in this study was collected continuously in a family house in Kuopio, Eastern Finland, during ten months long period. Indoor parameters were temperature, relative humidity (RH), the concentrations of carbon dioxide (CO2), TVOC and carbon monoxide (CO) and differential air pressure and particle counts(0.5 um and 2.5 um). In this study, self-organizing map (SOM) were applied to indoor air quality data for define correlation between of non-linear variables. The SOM was qualified as a suitable method having a property to summarize the multivariable dependencies into easily observable two-dimensional map. In addition, this paper presents the development of adaptive indoor air quality control for co-learning smart house.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salo, P.M., Sever, M.L., Zeldin, D.C.: Indoor allergens in school and day care environments. J. Allergy Clin. Immunol. 124(2), 185–192 (2009)

    Article  Google Scholar 

  2. Asumisterveysohje. Sosiaali- ja terveysministeriön oppaita. 2003:1, Sosiaali- ja terveysministeriö, Oy Edita Ab, Helsinki (in Finnish)

    Google Scholar 

  3. Daisey, J.M., Angell, W.J., Apte, M.G.: Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13(1), 53–64 (2003)

    Article  Google Scholar 

  4. Clements-Croome, D.J., et al.: Ventilation rates in schools. Build. Environ. 43(3), 362–367 (2008)

    Article  Google Scholar 

  5. Becker, R., Goldberger, I., Paciuk, M.: Improving energy performance of school buildings while ensuring indoor air quality ventilation. Build. Environ. 42(9), 3261–3276 (2007)

    Article  Google Scholar 

  6. Dascalaki, E.G., Sermpetzoglou, V.G.: Energy performance and indoor environmental quality in Hellenic schools. Energy Build. 43(2), 718–727 (2011)

    Article  Google Scholar 

  7. European Commission. Report 19: Total volatile organic compounds (TVOC) in indoor air quality investigations. Office for Official Publications of the European Communities (1997). ISBN 92-828-1078-X

    Google Scholar 

  8. Sisäilmastoluokitus, 2008 Sisäilmayhdistysry, Rakennustietosäätiö RTS, Asunto-, toimitila- ja rakennuttajaliitto RAKLI, Suomen Arkkitehtiliitto SAFA, Suunnittelu- ja konsulttitoimistojen liitto SKOL (2008). (in Finnish)

    Google Scholar 

  9. Sofuoglu, S.C.: Application of artificial neural networks to predict prevalence of building-related symptoms in office buildings. Build. Environ. 43(6), 1121–1126 (2008)

    Article  Google Scholar 

  10. Xie, H., Ma, F., Bai, Q.: Prediction of indoor air quality using artificial neural networks. In: Fifth International Conference on Natural Computation, ICNC 2009, vol. 2 IEEE (2009)

    Google Scholar 

  11. Lu, T., Viljanen, M.: Prediction of indoor temperature and relative humidity using neural network models: model comparison. Neural Comput. Appl. 18(4), 345–357 (2009)

    Article  Google Scholar 

  12. Kolehmainen, M., et al.: Forecasting air quality parameters using hybrid neural network modelling. In: Urban Air Quality: Measurement, Modelling and Management. Springer, Netherlands, pp. 277–286 (2000)

    Google Scholar 

  13. Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural networks and periodic components used in air quality forecasting. Atmos. Environ. 35(5), 815–825 (2001)

    Article  Google Scholar 

  14. Niska, H., et al.: Hybrid models for forecasting air pollution episodes. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna (2003)

    Google Scholar 

  15. Skon, J., Kauhanen, O., Kolehmainen, M.: Energy consumption and air quality monitoring system. In: 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), IEEE (2011)

    Google Scholar 

  16. Skön, J.P., et al.: Wireless building monitoring and control system. World Acad. Sci. Eng. Tech. 65, 706–711 (2012)

    Google Scholar 

  17. Kohonen, T.: Self-organizing maps, vol. 30. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Acknowledgments

This research work was funded by the European Union (EU) Artemis projects Adaptive Cooperative Control in Urban (Sub)Systems (ACCUS) and Design, Monitoring, and Operation of Adaptive Networked Embedded Systems (DEMANES). For financial support, the authors would like to thank the European Commission, as well as, authors would like to thank research group of Environmental Informatics, University of Eastern Finland, for providing the indoor air quality data for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Johansson, M., Haataja, K., Kolehmainen, M., Toivanen, P. (2015). Design of a Novel Adaptive Indoor Air Quality Control for Co-learning Smart House. In: Kanjo, E., Trossen, D. (eds) Sensor Systems and Software. S-CUBE 2014. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-319-17136-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17136-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17135-7

  • Online ISBN: 978-3-319-17136-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics