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ALGORITHMICALLY RANDOM FUNCTIONS AND EFFECTIVE

CAPACITIES

DOUGLAS CENZER AND CHRISTOPHER P. PORTER

Abstract. We continue the investigation of algorithmically random functions and closed
sets, and in particular the connection with the notion of capacity. We study notions of
random continuous functions given in terms of a family of computable measures called
symmetric Bernoulli measures. We isolate one particular class of random functions that we
refer to as random online functions F , where the value of y(n) for y = F (x) may be computed
from the values of x(0), . . . , x(n). We show that random online functions are neither onto nor
one-to-one. We give a necessary condition on the members of the ranges of random online
functions in terms of initial segment complexity and the associated computable capacity.
Lastly, we introduce the notion of Martin-Löf random online partial function on 2ω and give
a family of online partial random functions the ranges of which are precisely the random
closed sets introduced in [2].

Keywords: algorithmic randomness, computability theory, random closed sets, random
continuous functions, capacity.

1. Introduction

In a series of recent papers [2, 3, 4, 7], Barmpalias, Brodhead, Cenzer et al have developed
the notion of algorithmic randomness for closed sets and continuous functions on 2ω as
part of the broad program of algorithmic randomness. The study of random closed sets
was furthered by Axon [1], Diamondstone and Kjos-Hanssen [8], and others. Cenzer et al
[7] studied the relationship between notions of random closed sets with respect to different
computable probability measures and effective capacities.

Here we look more closely at the relationship between random continuous functions and
effective capacity. First, we generalize the notion of random continuous function from [4]
to a wider class of computable measures that we call symmetric Bernoulli measures. Then
we study properties of the effective capacities associated to the classes of functions that are
random with respect to various symmetric Bernoulli measures. We isolate one such class of
functions, which we refer to as random online continuous functions. We study the reals in
the range of a random online continuous function, as well as the average values of random
online continuous functions.

It turns out that a number of effective capacities cannot be generated by a class of functions
that are random with respect to a symmetric Bernoulli measure. We identify a class of
measures on the space of functions that yield random online partial continuous functions and
prove that a wide class of effective capacities can be generated by such functions, including
the effective capacity that is associated to the original definition of algorithmically random
closed set from [2].

Algorthmic randomness for closed sets was defined in [2] starting from a natural com-
putable measure on the space C(2ω) of closed subsets of 2ω and using the notion of Martin-
Löf randomness given by Martin-Löf tests. It was shown that ∆0

2 random closed sets exist
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but there are no random Π0
1 closed sets. It is shown that any random closed set is perfect,

has measure 0, and has box dimension log2
4
3
. A random closed set has no n-c.e. elements.

Algorithmic randomness for continuous functions on 2ω was defined in [4] by defining
a representation of such functions in 3ω and using the uniform measure on 2ω to induce
a measure on the space F(2ω) of continuous functions. It was shown that random ∆0

2

continuous functions exist, but no computable function can be random and no random
function can map a computable real to a computable real. The image of a random continuous
function is always a perfect set and hence uncountable. For any y ∈ 2ω, there exists a random
continuous function F with y in the image of F . Thus the image of a random continuous
function need not be a random closed set. The set of zeroes of a random continuous function
is a random closed set (if nonempty).

The connection between measure and capacity for the space C(2ω) was investigated in [7].
For any computable measure µ∗ on C(2ω), a computable capacity may be defined by letting
T (Q) be the µ∗-measure of the family of closed sets K which have nonempty intersection
with Q for each Q ∈ C(2ω). An effective version of the Choquet’s theorem was obtained by
showing that every computable capacity may be obtained from a computable measure in this
way. Conditions were given on a measure ν∗ on C(2ω) that characterize when the capacity
of all ν∗-random closed sets equals zero. For certain computable measures, effectively closed
sets with positive capacity and with Lebesgue measure zero are constructed. For computable
measures, a real q is upper semi-computable if and only if there is an effectively closed set
with capacity q.

The problem of characterizing the possible members of random closed sets was studied by
Diamondstone and Kjos-Hanssen in [8]. They gave an alternative presentation for random
closed sets and showed a strong connection between the effective Hausdorff dimension of a
real x and the membership of x in a random closed set.

The outline of the paper is as follows. In Section 2, we provide the requisite background.
In Section 3 we define symmetric Bernoulli measures on the space of continuous functions
on 2ω and prove basic facts about the domains and ranges of functions that are random with
respect to such measures. We study the connection between random functions and effective
capacities on the space of closed subsets of 2ω in Section 4. Next, we introduce and study
the notion of a random online function in Section 5. Lastly, in Section 6, we define random
online partial functions and establish a correspondence between the ranges of such functions
and various families of random closed sets.

The authors would like to thank Laurent Bienvenu and the anonymous referees for helpful
comments on an earlier draft of this paper.

2. Background

Some definitions are needed. For a finite string σ ∈ {0, 1}n, let |σ| = n denote the length
of n. For two strings σ, τ , say that τ extends σ and write σ ≺ τ if |σ| ≤ |τ | and σ(i) = τ(i)
for i < |σ|. For x ∈ 2ω, σ ≺ x means that σ(i) = x(i) for i < |σ|. Let σ⌢τ denote the
concatenation of σ and τ and let σ⌢i denote σ⌢(i) for i = 0, 1. Let x↾n = (x(0), . . . , x(n−1)).
The empty string will be denoted ǫ. Two reals x and y may be coded together into z = x⊕y,
where z(2n) = x(n) and z(2n + 1) = y(n) for all n. For a finite string σ, let JσK denote
{x ∈ 2ω : σ ≺ x}. We shall refer to JσK as the interval determined by σ. Each such interval
is a clopen set and the clopen sets are just finite unions of intervals. Now a nonempty closed
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set P may be identified with a tree TP ⊆ {0, 1}∗ where TP = {σ : P ∩ JσK 6= ∅}. Note that
TP has no dead ends. That is, if σ ∈ TP , then either σ⌢0 ∈ TP or σ⌢1 ∈ TP (or both).
For an arbitrary tree T ⊆ {0, 1}∗, let [T ] denote the set of infinite paths through T . It is
well-known that P ⊆ 2ω is a closed set if and only if P = [T ] for some tree T . P is a Π0

1

class, or an effectively closed set, if P = [T ] for some computable tree T .
A measure ν on 2ω is computable if there is a computable function ν̂ : 2<ω × ω → Q2

(where Q2 = {m
2n

: n,m ∈ ω}) such that |ν(JσK)− ν̂(σ, i)| ≤ 2−i for every σ ∈ 2<ω and i ∈ ω.
A computable measure on 3ω is similarly defined.

Martin-Löf [10] observed that stochastic properties could be viewed as special kinds of
effectively presented measure zero sets and defined a random real as one that avoids these
measure 0 sets. More precisely, a real x ∈ 2ω is Martin-Löf random if for every effective
sequence S1, S2, . . . of c.e. open sets with µ(Sn) ≤ 2−n, x /∈ ⋂

n Sn (where µ is the uniform
measure on 2ω). This can be straightforwardly extended to any computable measure ν on
2ω or 3ω by replacing the condition µ(Sn) ≤ 2−n with ν(Sn) ≤ 2−n.

Given a measure µ on 3ω, we define a measure µ∗ on the space C(2ω) of closed subsets
of 2ω as follows. Given a closed set Q ⊆ 2ω, let T = TQ be the tree without dead ends
such that Q = [T ]. Let σ0, σ1, . . . enumerate the elements of T in order, first by length and
then lexicographically. We then define the (canonical) code x = xQ = xT of Q by recursion
such that for each n, x(n) = 2 if both σn

⌢0 and σn
⌢1 are in T , x(n) = 1 if σn

⌢0 /∈ T and
σn

⌢1 ∈ T , and x(n) = 0 if σn
⌢0 ∈ T and σn

⌢1 /∈ T . We then define µ∗ by setting

(1) µ∗(X ) = µ({xQ : Q ∈ X})
for any X ⊆ C(2ω). For the uniform measure, this means that given σ ∈ TQ, there is
probability 1

3
that both σ⌢0 ∈ TQ and σ⌢1 ∈ TQ and, for i = 0, 1, there is probability 1

3
that only σ⌢i ∈ TQ. Brodhead, Cenzer, and Dashti [2] defined a closed set Q ⊆ 2ω to be
(Martin-Löf) random if xQ is (Martin-Löf) random. We will sometimes refer to the random
closed sets given by the uniform measure on 3ω as the standard random closed sets.

Given a continuous function F on 2ω, observe that for any σ ∈ 2<ω there is some n ∈ ω
and τ ∈ 2<ω of length n such that for all x ∈ JσK, F (x)↾n = τ .

Let F(2ω) denote the collection of all continuous functions F : 2ω → 2ω. Each F ∈ F(2ω)
may be represented by a function f : 2<ω \ {ǫ} → {0, 1, 2}, defined inductively as follows.
Suppose we have defined f(σ↾i) = ei for i = 1, . . . , n and every σ of length n. Then given
some σ of length n+ 1, where f(σ↾i) = ei for i = 1, . . . , n, let ρ = (n1, . . . , nk) be the result
of deleting all 2s from (e1, . . . , en). If for all x ∈ JσK, F (x)↾(k+1) = ρ⌢j for some j ∈ {0, 1},
then we may set en+1 = j, although we may set en+1 = 2. If there is no such j, we must set
en+1 = 2. It is helpful to think of the 2’s as delaying the output of F along initial segments
of some x ∈ 2ω. For each F ∈ F(2ω), there are infinitely many functions that represent F ,
and f : 2<ω \ {ǫ} → {0, 1, 2} defines a (possibly partial) F ∈ F(2ω).

Each representing function f : 2<ω \ {ǫ} → {0, 1, 2} can be straightforwardly coded as
some z ∈ 3ω. We can thus define a measure µ∗∗ on F(2ω) induced by the uniform measure
on 3ω. As with the case of computable measures on C(2ω), every computable measure ν on
3ω induces a computable measure ν∗∗ on F(2ω). Brodhead, Cenzer, and Remmel [6] defined
F ∈ F(2ω) to be Martin-Löf random if F is represented by a representing function coded by
a Martin-Löf random z ∈ 3ω. We will sometimes refer to the random continuous functions
given by the uniform measure on 3ω as the standard random continuous functions.

Next we consider the notion of a capacity.
3



Definition 2.1. A capacity on C(2ω) is a function T : C(2ω) → [0, 1] with T (∅) = 0 such
that

(1) T is monotone increasing, that is, Q1 ⊆ Q2 implies T (Q1) ≤ T (Q2).
(2) T has the alternating of infinite order property, that is, for n ≥ 2 and any Q1, . . . , Qn ∈

C
T (

n⋂

i=1

Qi) ≤
∑

{(−1)|I|+1T (
⋃

i∈I

Qi) : ∅ 6= I ⊆ {1, 2, . . . , n}}.

(3) If Q =
⋂

n Qn and Qn+1 ⊆ Qn for all n, then T (Q) = limn→∞ T (Qn).

We will also assume, unless otherwise specified, that T (2ω) = 1. We will say that a
capacity T is computable if it is computable on the family of clopen sets, that is, if there
is a computable function F from the Boolean algebra B of clopen sets into [0, 1] such that
F (B) = T (B) for any B ∈ B.

Given a measure µ∗ on the space C(2ω) of closed sets, define

Tµ(Q) = µ∗({X ∈ C(2ω) : X ∩ S 6= ∅}),
That is, Tµ(Q) is the probability that a randomly chosen closed set meets Q. The following
effective version of the Choquet Capacity Theorem was shown in [7].

Theorem 2.2 ([7]). (1) For any computable probability measure µ on C(2ω), Tµ is a
computable capacity.

(2) For any computable capacity T on C(2ω), there is a computable measure µ on the
space of closed sets such that T = Tµ.

For a given computable capacity T , if µ∗ is a computable measure on C(2ω) such that
T = Tµ, we will refer to µ∗-random closed sets as the random closed sets associated to T
and T as the capacity associated to the µ∗-random closed sets.

3. Symmetric Bernoulli Measures on F(2ω)

In this section, we consider continuous functions that are random with respect to some
measure from a specific class of computable measures on 3ω.

Definition 3.1. Let µ be a measure on 3ω.

(i) µ is a Bernoulli measure if there are p0, p1, p2 ∈ [0, 1] such that p0 + p1 + p2 = 1 and
µ(σ⌢i) = pi · µ(σ) for each i ∈ {0, 1, 2}.

(ii) µ is a symmetric Bernoulli measure if µ is a Bernoulli measure and there is some
r ∈ [0, 1/2] such that r = p0 = p1 (so that p2 = 1− 2r).

The symmetric Bernoulli measure with parameter r ∈ [0, 1/2] will be denoted µr. Note
that µr is computable if and only if r is a computable real number.

We are interested in the behavior of the µ∗∗
r -random continuous functions on 2ω. Note that

in the case that r = 1/3, µr is the uniform measure on 3ω and the µ∗∗
r -random continuous

functions are the standard random continuous functions discussed in the previous section.
In fact, the results in this section generalize certain results from [3] concerning µ∗∗

1/3-random
continuous functions.

First, it was shown in [3] that every µ∗∗
1/3-random continuous function is total. However, if

we allow the parameter r to vary, which results in a change of the probability of the occur-
rence of delays (i.e., the occurrence of 2s), the situation becomes slightly more interesting.
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Specifically, if µr is such that the probability of delay is greater than or equal to 1/2, then
not every µ∗∗

r -random function will be total.
The following lemma will be needed.

Lemma 3.2. Let µr be a symmetric Bernoulli measure on 3ω, let A ⊆ {0, 1, 2}, and let
p =

∑
i∈A pi, where p0 = p1 = r and p2 = 1 − 2r. Then the µ∗∗-measure q of the functions

F ∈ F(2ω) such that there exists x ∈ 2ω with f(x↾n) ∈ A for all n (where f is the function
representing F ) equals 0 if p ≤ 1/2 and equals 2p−1

p2
if p > 1/2.

Proof. It follows from the compactness of 2ω that there exists x such that f(x↾n) ∈ A for
all n > 0 if and only if for every n, there exists σ ∈ {0, 1}n such that f(σ↾m) ∈ A for all
0 < m < n. Let qn be the probability that such σ ∈ {0, 1}n exists. Then q0 = 1, qn+1 ≤ qn
for all n, and q = limn→∞ qn. Considering the cases of f(i) for i ∈ {0, 1}, we calculate that

qn+1 = 2pqn − p2q2n.

Taking the limit of both sides, we see that q = 2pq − p2q2, so that either q = 0 or q = 2p−1
p2

.

In the case that p < 1/2, the latter is negative. Thus q = 0 if p ≤ 1/2.
For the other case, note first that 2pqn − p2q2n = 1 − (1 − pqn)

2, so that qn ≥ x implies
that 2pqn − p2q2n ≥ 2px− p2x2. Let s = 2p−1

p2
. We now show by induction that qn ≥ s for all

n. Initially we have q0 = 1 ≥ s. Now assuming that qn ≥ s, it follows that

qn+1 = 2pqn − p2q2n ≥ 2ps− p2s2 = s(2p− p2s) = s(2p− (2p− 1)) = s.

Now suppose that p > 1/2, so that s = 2p−1
p2

> 0. Since the sequence (qn)n∈ω is decreasing
and qn ≥ s for all n, it follows that the limit q = limn qn ≥ s and hence q = s. �

Proposition 3.3. Let µr be a symmetric Bernoulli measure on 3ω for some r ∈ [0, 1/2].
Then the µ∗∗

r -measure of the collection of partial continuous functions on 2ω is 0 if r ≥ 1/4
and is 1 if r < 1/4.

Proof. First note that the measure must be either 0 or 1 in either case. This is because a
function F is total if and only if the restrictions of F to both J0K and J1K are total, so that
if p is the measure of the set of total functions, then p = p2. Next observe that the function
represented by f : 2<ω → {0, 1, 2} is partial if and only if there exists x ∈ 2ω and n such
that f(x↾m) = 2 for all m ≥ n. It is enough to compute the probability q that there exists
x such that f(x↾m) = 2 for all m > 0.

Let A = {2}, so that f(σ) ∈ A with probability p = 1−2r for each σ ∈ 2<ω \{ǫ}. Then by
Lemma 3.2, the µ∗∗-measure of functions F such that there exists x ∈ 2ω with f(x↾n) ∈ A
for all n > 0 equals 0 if r ≥ 1/4 and equals 2p−1

p2
= 1−4r

(1−2r)2
if r < 1/4. Since for r < 1/4,

there are positive µ∗∗-measure many functions F for which such an x exists, it follows that
the collection of partial functions has µ∗∗-measure 1.

�

Next, it was also shown in [3] that the probability that the range of a random continuous
function includes a fixed y ∈ 2ω is equal to 3/4. This was obtained by computing, for each
σ ∈ 2<ω of length n, the probability pn that the range of a random continuous function has
non-empty intersection with JσK and then proving that limn→∞ pn = 3/4. We consider the
analogous result in the general case of a symmetric Bernoulli measure.

5



Theorem 3.4. Let µr be a symmetric Bernoulli measure on 3ω for some r ∈ (0, 1/2] and
let y ∈ 2ω. Then the µ∗∗

r -measure of the collection of continuous functions F such that
y ∈ ran(F ) is equal to

1− 2r

(1− r)2
.

Proof. By symmetry of the measure µr, it suffices to show that µ∗∗
r -measure of the collection

of continuous functions F such that 0∞ ∈ ran(F ) is equal to 1−2r
(1−r)2

. Let A = {0, 2}, so that

f(σ) ∈ A with probability p = 1− r for σ ∈ 2<ω \ {ǫ}. Then by Lemma 3.2, the µ∗∗-measure
of functions F such that there exists x ∈ 2ω with f(x↾n) ∈ A for all n equals 0 if r ≥ 1/2
and equals 2p−1

p2
= 1−2r

(1−r)2
if r < 1/2.

Note that even if a function F satisfies f(x↾n) ∈ A for every n > 0 for some x ∈ 2ω, this
does not guarantee that 0∞ ∈ ran(F ), since we may have f(x↾n) = 2 for all but finitely many
n. For a given F ∈ F(2ω), let CF = {x ∈ 2ω : (∀n)f(x↾n) ∈ A}. One can verify that the
probability that 0∞ ∈ ran(F ), given that CF is non-empty, is 1 as follows. Suppose that CF
is non-empty. Then if we consider the left-most path x of CF , by the law of large numbers,
as the occurrence of the label 0 on initial segments of x is r

1−r
, the limiting frequency of 0s

along x is r
1−r

with probability 1. Since the µ∗∗
r -measure of the collection of functions F such

that CF is non-empty is 1−2r
(1−r)2

, the conclusion follows.

�

Observe that as r approaches 0, the above probability approaches 1. This means that
as the probability of delay approaches 1, we have more chances to hit any given real, and
so this probability approaches one. However, for the value r = 0, we have a discontinuity,
as the resulting measure is concentrated on the function coded by 2∞, which never outputs
any bits but only delays indefinitely on every possible input. Lastly, as r approaches 1/2,
the above probability approaches 0. In fact, this probability only attains the value 0 when
r = 1/2, that is, when the µ∗∗

r -random functions have no delay. Hereafter, we will refer to
µ∗∗
1/2-random functions as random online functions, which we study in detail in Section 5.

4. From Functions to Capacities

The significance of the proof of Theorem 3.4 is that it reveals a connection between a
notion of random continuous function and a notion of effective capacity. In particular, we
have the following result.

Theorem 4.1. Let ν∗∗ be a computable measure on F(2ω) and suppose that every ν∗∗-random
function is total. Then the function

T (S) = ν∗∗({F ∈ F(2ω) : ran(F ) ∩ S 6= ∅})
is a computable capacity on C(2ω).
Proof. First we show that the map taking a ν∗∗-random function to its range induces a
computable measure on C(2ω). Let F be a ν∗∗-random function. Since F is a continuous
map from a compact space to a Hausdorff space, F is a closed map. By assumption, F is
total, and hence ran(F ) = F (2ω) is a closed set. Moreover, it is not hard to see that there is
a (partial) Turing functional Φ : 3ω → 3ω that, given a real in 3ω that codes a representing
function f of some ν∗∗-random function F , outputs a real that codes the range of F . One

6



can verify that Φ is defined on a subset of 3ω of ν-measure one. It follows that Φ and ν
together induce a computable measure νΦ on 3ω defined by

νΦ(X ) = ν(Φ−1(X ))

for all measurable X ⊆ 3ω (see [5, Lemma 2.6]). It follows from the preservation of random-
ness theorem ([5, Theorem 3.2]) that the image of a ν-random real under Φ is a νΦ-random
real. In addition, by the no randomness ex nihilo principle ([5, Theorem 3.5]), every νΦ-
random real is the image of a ν-random real under Φ. Thus, it follows that the range of
a ν∗∗-random continuous function is a ν∗

Φ-random closed set and every ν∗
Φ-random is in the

range of some ν∗∗-random continuous function.
Thus we have

T (Q) = ν∗∗({F ∈ F(2ω) : ran(F ) ∩Q 6= ∅}) = ν∗
Φ({C ∈ C(2ω) : C ∩Q 6= ∅})

for every Q ∈ C(2ω). By the Theorem 2.2, it follows that T is a computable capacity. �

In the proof of Theorem 4.1, we showed that if ν∗∗ is a computable measure on F(2ω)
such that the ν∗∗-random functions are total, then the ranges of the ν∗∗-random functions
yield a notion of random closed sets with respect to some computable measure ν∗

Φ on C(2ω).
This raises the following question: Is there a computable measure ν∗∗ on F(2ω) such that
the ranges of the ν∗∗-random functions are the standard random closed sets?

We will provide a full answer to this question in Section 6, but as a first step, we prove
the following.

Proposition 4.2. Let µr be a symmetric Bernoulli measure on 3ω with r ∈ (0, 1/2). Then
the collection of ranges of the µ∗∗

r -random functions is not the collection of standard random
closed sets.

Proof. Let r ∈ (0, 1/2). By Theorem 3.4, the µ∗∗
r -measure of the collection of continuous

functions F such that 0∞ ∈ ran(F ) is equal to
1− 2r

(1− r)2
> 0. However, as shown in [2], no

standard random closed set contains a computable real, and thus the conclusion follows. �

A more significant difference between the collection of ranges of the µ∗∗
r -random functions

and the collection of standard random closed sets can be seen by considering the computable
capacity associated to each of these two collections. First, let µ be the uniform measure
on 3ω. Then the capacity Tµ(Q) on C(2ω) associated to the collection of standard random
closed sets (see Theorem 2.2) can be shown to satisfy T (JσK) =

(
2
3

)n
for every n ∈ ω and

every σ ∈ 2<ω of length n. Thus for x ∈ 2ω, Tµ({x}) = limn→∞ Tµ(Jx↾nK) = 0.
Now suppose that r ∈ (0, 1/2). Let ν = µr and let Tr be the capacity from Theorem

4.1. Then as we proved Tr({x}) > 0 for every x ∈ 2ω. Thus, if we want to find a family of
random functions such that the ranges of all such functions are the standard random closed
sets, then we need the capacity T associated to this family to satisfy T ({x}) = 0 for every
x ∈ 2ω.

One such candidate is the collection of µ∗∗
1/2-random functions, for by Theorem 4.1, in the

case that r = 1/2, we have Tr({x}) = 0 for every x ∈ 2ω. Is it the case that the ranges of
the µ∗∗

1/2-random functions are the standard random closed sets? To answer this question,
we will look more closely at the µ∗∗

1/2-random functions.
7



5. Random Online Functions

In this section, we study the collection of functions that are random with respect to the
measure µ∗∗

1/2 induced by the symmetric Bernoulli measure µ1/2 on 3ω. We will hereafter refer
to the µ∗∗

1/2-random functions as the random online functions due to the absence of 2’s in their

codes in 3ω, which means that each bit given as input to such a function immediately (and
randomly) yields one bit as output. Given this absence of 2s, we can equivalently define a
random online function to be given by a representing function f : 2<ω \ {ǫ} → {0, 1}. In this
case, each online function has precisely one representing function. To see this, let (σn)n∈ω be
the canonical listing of 2<ω in length-lexicographical order. Then given x ∈ 2ω, we define a
representing function fx such that fx(σn+1) = x(n) for every n ∈ ω. One can readily verify
that the function FX defined by

Fx(y) = fx(y↾1)
⌢fx(y↾2)

⌢fx(y↾3)
⌢ . . .

is an online function, and that every online function can be obtained in this way. Thus, a
function F ∈ F(2ω) is a random online function if and only if F has a representing function
f coded by a Martin-Löf random x ∈ 2ω.

Note that by Proposition 3.3, every random online function is total. We establish several
additional results.

Theorem 5.1. No computable real is in the range of a random online function.

Proof. The proof can be obtained by modifying the proof of Theorem 2.4 from [3], according
to which no standard random continuous function is partial. �

Corollary 5.2. No random online function is onto.

Theorem 5.3. Let F be a random online function and let x ∈ 2ω code the representing
function of F . If y is Martin-Löf random with relative to x, then F−1({F (y)}) is a standard
random closed set.

Sketch. We define a map Θ : 2ω → 3ω such that maps the join of two reals x ⊕ y ∈ 2ω to
some z ∈ 3ω, where x is the code of the representing function of a random online function
and z is a code of the closed set F−1({F (y)}). One can verify that Θ induces the uniform
measure on 3ω. Given y ∈ MLR

x, by van Lambalgen’s theorem (see [9, Theorem 6.9.1]) the
real x ⊕ y is random, and hence by the preservation of randomness theorem, Θ(x ⊕ y) = z
is random with respect to the measure induced by Θ, namely the uniform measure on 2ω,
which establishes the theorem. �

Corollary 5.4. No random online function is one-to-one.

Proof. Given a random online function F , let let x ∈ 2ω code the representing function of F .
Since F is total, F is defined on some y that is Martin-Löf random relative to x. Then by
Theorem 5.3, F−1({F (y)}) is a random closed set, which is perfect (as shown in [2]). Thus
F is not one-to-one. �

By Theorem 3.4, for a fixed y ∈ 2ω, the probability that a random online function will
have y in its range is 0. In fact, if for each n we let pn be the probability that a random
online function hits JσK for a fixed σ of length n (where F hits JσK if ran(F ) ∩ JσK 6= ∅), by
considering the cases of f(i) for i ∈ {0, 1}, one can show that
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(i) p1 = 3/4, and
(ii) pn+1 = pn(1− 1

4
pn).

Moreover, one can verify that limn→∞ pn = 0 for each n ≥ 1. Hereafter, we will refer to the
pi’s as hitting probabilities.

Using the notation of the previous section, it follows that T1/2(σ) = pn for every n and
every σ of length n. We can use this fact to determine the computable measure ν on 3ω

with the property that the ν∗-random closed sets are precisely the ranges of random online
functions. Following the proof of the effective Choquet capacity theorem from [7] to find the
values of ν, the key observation to make is that for each n ∈ ω and each σ ∈ 2<ω of length
n,

ν(σ2 | σ) = 2
( pn
pn−1

)
− 1 = 2(1− 1

4
pn)− 1 = 1− 1

2
pn

for n ≥ 1 (where p0 = 1). Here ν(σi | σ) is the probability, under ν, that a random function
F hits JσiK given that F hits JσK. For each such σ, we thus have ν(σ0 | σ) = ν(σ1 | σ) = 1

4
pn.

Since limn→∞ pn = 0, ν(σ2 | σ) approaches 1 while ν(σ0 | σ) and ν(σ1 | σ) both approach 0
as we consider longer and longer strings σ. Thus one can prove:

Theorem 5.5. For each random online function F , the range of F is not a standard random
closed set.

Proof. Let µ be the uniform measure on 3ω and let ν be the measure on 3ω as defined above.
Then one can verify that µ/ν is a computable ν-martingale on 3ω, where d : 2<ω → [0,+∞)
is a ν-martingale on 3ω if

ν(σ)d(σ) = ν(σ0)d(σ0) + ν(σ1)d(σ1) + ν(σ2)d(σ2).

Given a x ∈ 3ω, for each n ≥ 0 we can write

µ
(
x↾(n + 1)

)

ν
(
x↾(n+ 1)

) =
µ
(
x↾(n + 1) | x↾n

)

ν
(
x↾(n + 1) | x↾n

) µ(x↾n)
ν(x↾n)

,

Since limn→∞ pn = 0, for each k, there is some nk such that pnk
≤ 2−k. Then for any σ of

length greater than nk, we have 1 ≥ ν(σ2 | σ) ≥ 1 − 2−(k+1) and ν(σ0 | σ) = ν(σ1 | σ) ≤
2−(k+2). If x ∈ 3ω is µ-random, then for each n ≥ nk such that x(n) = 2, which happens
roughly 1/3 of the time, we have

µ
(
x↾(n+ 1)

)

ν
(
x↾(n+ 1)

) =
1/3

ν
(
(x↾n)⌢2 | x↾n

) µ(x↾n)
ν(x↾n)

≥ 1/3
µ(x↾n)

ν(x↾n)
,

For each n ≥ nk such that x(n) = 0 or x(n) = 1, which happens roughly 2/3 of the time, we
have for i = 0, 1,

µ
(
x↾(n+ 1)

)

ν
(
x↾(n+ 1)

) =
1/3

ν
(
(x↾n)⌢i | x↾n

)ν(x↾n) ≥ 1/3

2−(k+2)

µ(x↾n)

ν(x↾n)
≥ 2k

µ(x↾n)

ν(x↾n)
.

One can verify that limn→∞
µ(x↾n+1)
ν(x↾n+1)

= ∞ for every µ-random x ∈ 3ω. It is well-known that

this implies that no such x can be ν-random, and the conclusion follows. �

It is reasonable to ask which reals are in the range of some random online function. We
give a partial answer to this question by providing a necessary condition for being a member
of the range of some random online function. We first prove a more general result, which

9



is an extension of a result in [8], according to which every member of a standard random
closed set must have sufficiently high effective Hausdorff dimension. Recall that K(σ) is the
prefix-free Kolmogorov complexity of σ.

Theorem 5.6. Let µ∗ be a computable measure on C(2ω) and Tµ the computable capacity
associated to µ. If x is a member of some µ∗-random closed set, then there is some c such
that

K(x↾n) ≥ − log Tµ(Jx↾nK)− c

for all n.

Proof. Suppose that x is such that for every c, there is some n such that

K(x↾n) < − log Tµ(Jx↾nK)− c.

We first define

Si = {σ ∈ 2<ω : K(σ) < − log Tµ(JσK)− i}.

Next, we let Ŝi consist of those strings in Si with no proper initial segments in Si, so that

JŜiK = JSiK. Lastly, we define

Ui = {Q ∈ C(2ω) : (∃σ ∈ Ŝi)[Q ∩ JσK 6= ∅]}.

Then

µ∗(Ui) ≤
∑

σ∈Ŝi

µ∗({Q ∈ C(2ω) : Q ∩ JσK} 6= ∅) =
∑

σ∈Ŝi

Tµ(JσK) <
∑

σ∈Ŝi

2−K(σ)−i ≤ 2−i,

where the last inequality follows from the fact that
∑

σ∈2<ω 2−K(σ) ≤ 1. Thus, (Ui)i∈ω forms
a µ∗-Martin-Löf test. Now let Q ∈ C(2ω) be such that x ∈ Q. Then for each i, there is some

least n such that x↾n ∈ Ŝi, and thus Q ∈ Ui. It follows that no Q ∈ C(2ω) containing x is
µ∗-random. �

An order function f : ω → ω is a non-decreasing, unbounded function. Recall further that
a real x ∈ 2ω is complex if there is some computable order function f such that K(x↾n) ≥
f(n) for every n. Let (pn)n∈ω be the collection of hitting probabilities determined by the
collection of random online functions. Since (pn)n∈ω is a computable, strictly decreasing
sequence of rationals that converges to 0, it follows that the function f(n) = − log pn is a
computable order function.

This observation, combined with Theorem 5.6, yields:

Corollary 5.7. If x ∈ 2ω is in the range of a random online function, then

K(x↾n) ≥ − log pn − c

for some c ∈ ω. In particular, x is complex.

We conjecture that the converse, or some minor variant thereof, holds as well.
10



6. Random Online Partial Functions

As we have seen, for each symmetric Bernoulli measure µr on 2ω with r ∈ (0, 1/2), the
collection of ranges of the µ∗∗

r -random functions is not the collection of standard random
closed sets. The collection of ranges of random online functions was, at first glance, a
reasonable candidate for being equal to the collection of standard random closed sets, but
this too fails by Theorem 5.5. Thus, we cannot use symmetric Bernoulli measures to obtain
such a class of random functions.

As discussed in Section 4, the capacity T associated to the standard random closed sets
satisfies T ({x}) = 0 for every x ∈ 2ω. Thus, for any collection of random functions the
ranges of which are the standard random closed sets, we need the capacity associated with
this collection of functions to converge to zero quickly. Note, however, that by Theorem 3.4,
as we increase the possibility of delay in our functions, this actually increases the probability
that we hit a given real.

The first step to a solution is to introduce a notion of random online partial function. As
with the representing functions of continuous functions on 2ω, we define an online partial
function to be given by a {0, 1, 2}-valued representing function. The values 0 and 1 play the
same role as before, but the 2’s play a different role. If F is the partial function given by
a {0, 1, 2}-valued representing function f , for each σ ∈ 2<ω with f(σ) = 2, we have F (X)↑
for every X ≻ σ. That is, instead of causing our function to delay at a given node, a node
labelled with a ‘2’ indicates that our function is undefined on all reals extending this node.

Observe that each symmetric Bernoulli measure µr on 3ω yields a notion of random online
partial function. However, for certain choices of r, we are not even guaranteed to have any
functions with non-empty domain.

Proposition 6.1. If µr is a computable symmetric Bernoulli measure on 3ω, then the prob-
ability that a µ∗∗

r -random online partial function has non-empty domain is 0 if r < 1/4 and
is

4r − 1

4r2

if r ≥ 1/4.

Proof. An online partial function F has non-empty domain if and only if there is some x ∈ 2ω

such that f(x↾n) 6= 2 for every n > 0. Let A = {0, 1}, so that f(σ) ∈ A with probability
p = 2r for every σ ∈ 2<ω \ {ǫ}. Applying Lemma 3.2, the µ∗∗-measure of functions F such
that there exists x ∈ 2ω with f(x↾n) ∈ A for all n equals 0 if r < 1/4 and equals 2p−1

p2
= 4r−1

4r2

if r ≥ 1/4.
�

The final step to obtaining a collection of random functions whose ranges are the standard
random closed sets is to consider a wider class of measures, namely, computable, symmetric
generalized Bernoulli measures on 3ω. Such a measure is given by a computable sequence of
rationals ~r = (ri)i∈ω with ri ≤ 1/2 for every i such that for each n and each σ of length n,
µ~r(σ0 | σ) = µ(σ1 | σ) = rn · µ(σ) and µ~r(σ2 | σ) = (1 − 2rn)µ(σ). We can now prove the
following.

Theorem 6.2. Let T be an computable capacity on C(2ω) such that there is a computable
sequence of rationals (pi)i∈ω satisfying

11



(i) for each n, T (JσK) = pn for every σ ∈ 2n, and
(ii) limn→∞ pn = 0.

Then there is a computable, generalized symmetric Bernoulli measure µ~r on 3ω such that
the ranges of the µ∗∗

~r -random online partial functions are precisely the random closed sets
associated with the capacity T . Moreover, in the case that limn→∞

pn+1

pn
= p for some p ∈

[0, 1], we have limn→∞ rn = p
2
.

Proof. To obtain the measure µ~r, we suppose we have a collection of µ~r-random functions
that yield the hitting probabilities (pn)n∈ω then follow the proof of Theorem 3.4 to recover
the values of the sequence (ri)i∈ω.

Without loss of generality, we can consider the probability of hitting J0nK for each n.
By convention, p0 = T (∅) = 1. For n ≥ 0, to determine the relationship between pn+1

and pn, we consider the possible initial values f(0) and f(1) of a representing function
f : 2<ω \ {ǫ} → {0, 1, 2} corresponding to an arbitrary F ∈ F(2ω). Due to our new
interpretation of 2s, we only have a total of four cases to consider:

Case 1 : f(0) 6= 0 and f(1) 6= 0, then ran(F ) ∩ J0n+1K = ∅.
Case 2 : If f(0) = f(1) = 0, which occurs with probability r2n+1, then ran(F ) ∩
J0n+1K 6= ∅ with probability 1− (1− pn)

2 = 2pn − p2n.
Case 3 : f(i) = 0 and f(1 − i) = 1, which occurs with probability 2r2n+1, then
ran(F ) ∩ J0n+1K 6= ∅ with probability pn.
Case 4 : f(i) = 0 and f(1 − i) = 2, which occurs with probability 2rn+1(1− 2rn+1),
then ran(F ) ∩ J0n+1K 6= ∅ with probability pn.

Combining these cases yields

pn+1 = (2pn − p2n)r
2
n+1 + 2pnr

2
n+1 + 2rn+1(1− 2rn+1)pn,

which simplifies to

pn+1 = 2pnrn+1 − p2nr
2
n+1.

Solving for rn+1 yields

rn+1 =
pn+1

pn(1 +
√
1− pn+1)

.

It follows that the capacity induced by the family of µ∗∗
~r -random online partial functions is the

capacity T . Now, the map Φ that maps a µ∗∗
~r -random online partial function F to its range

is still a computable map, as we can effectively determine those basic open neighborhoods
JσK on which F is undefined. Then if we let ν∗ be the computable measure on C(2ω) induced
by Φ and µ~r (as in the proof of Theorem 4.1), then we will have

T (Q) = µ∗∗
~r ({F ∈ F(2ω) : ran(F ) ∩Q 6= ∅}) = ν∗({C ∈ C(2ω) : C ∩Q 6= ∅}).

for every Q ∈ C(2ω). Thus, the ranges of the µ∗∗
~r -random online partial functions are the

random closed sets associated to T .
Lastly, observe that

lim
n→∞

rn = lim
n→∞

pn+1

pn(1 +
√
1− pn+1)

=
(
lim
n→∞

pn+1

pn

)(
lim
n→∞

1

1 +
√
1− pn+1

)
=

p

2
.

�
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Theorem 6.3. Let ~r = (ri)i∈ω be defined by

ri =
2/3

1 +

√
1−

(
2
3

)i
.

Then the collection of ranges of the µ∗∗
~r -random online partial functions is equal to the col-

lection of the standard random closed sets.

Proof. Let T be the capacity associated to the standard random closed sets. As discussed

in Section 4, we have T (JσK) =
(

2
3

)n

for every n ∈ ω. Then T satisfies the conditions of

Theorem 6.2. By the proof of Theorem 6.2, if µ~r is the computable, symmetric generalized
Bernoulli measure on 3ω where

ri =
2/3

1 +

√
1−

(
2
3

)i

for every i ∈ ω, then the ranges of the µ∗∗
~r -random online partial functions are precisely the

standard random closed sets. �
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