Skip to main content

Asymptotic Properties of Combinatory Logic

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9076))

  • 761 Accesses

Abstract

We present a quantitative analysis of random combinatory logic terms. Our main goal is to investigate likelihood of semantic properties of random combinators. We show that asymptotically almost all weakly normalizing terms are not strongly normalizing. Moreover, we present a proof that asymptotically almost all strongly normalizing terms are not in normal form. We also prove that asymptotically almost all normal forms in combinatory logic are not typeable.

This work was supported within the grant 2013/11/B/ST6/0095 funded by the Polish National Science Center.

K. Grygiel—This author was supported by funding from the Jagiellonian University within the SET project. The project is co-financed by the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barendregt, H.P., Bergstra, J., Klop, J.W., Volken, H.: Some notes on lambda reduction, in: Degrees, reductions and representability in the lambda calculus. Preprint no. 22, University of Utrecht, Department of mathematics, pp. 13–53 (1976)

    Google Scholar 

  2. Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited. Comb. Probab. Comput. 13(4–5), 475–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Curry, H., Feys, R.: Combinatory Logic, vol. I. North Holland, Amsterdam (1958)

    MATH  Google Scholar 

  4. David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymptotically almost all \(\lambda \)-terms are strongly normalizing. Logical Methods Comput. Sci. 9, 1–30 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  6. Fournier, H., Gardy, D., Genitrini, A., Zaionc, M.: Classical and intuitionistic logic are asymptotically identical. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 177–193. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Gardy, D. Random boolean expressions. In: Discrete Mathematics and Theoretical Computer Science Proceedings AF, pp.1–36 (2005)

    Google Scholar 

  8. Gardy, D., Woods, A.: And/Or tree probabilities of boolean functions. Discrete Math. Theor. Comput. Sci. 6, 139–146 (2005)

    MathSciNet  Google Scholar 

  9. Genitrini, A., Kozik, J.: In the full propositional logic, 5/8 of classical tautologies are intuitionistically valid. Ann. Pure Appl. Logic 163(7), 875–887 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grygiel, K., and Lescanne, P. Counting terms in the binary lambda calculus. In: DMTCS 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (2014)

    Google Scholar 

  11. Kostrzycka, Z., Zaionc, M.: Statistics of intuitionistic versus classical logic. Stud. Logica 76(3), 307–328 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kozik, J.: Subcritical pattern languages for And/Or trees. In: DMTCS Proceedings from Fifth Colloquium on Mathematics and Computer Science Algorithms Trees, Combinatorics and Probabilities, pp. 437–448 (2008)

    Google Scholar 

  13. Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean formulas. Random Struct. Algorithms 10, 337–351 (1997)

    Article  MATH  Google Scholar 

  14. Moczurad, M., Tyszkiewicz, J., Zaionc, M.: Statistical properties of simple types. Math. Struct. Comput. Sci. 10(5), 575–594 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Olivier, B., Danièle, G., Bernhard, G., Alice, J.: Enumeration of generalized BCI lambda-terms. Electr. J. Comb. 20, 4 (2013)

    Google Scholar 

  16. Szegö, G.: Orthogonal polynomials. Am. Math. Soc. Colloquium Ser. Publ. 23, 413–421 (1967)

    Google Scholar 

  17. Tromp, J. Binary lambda calculus and combinatory logic. Unpublished manuscript (2014). http://tromp.github.io/cl/LC.pdf.

  18. Wilf, H.: Generating Functionology. Academic Press, Boston (1994)

    Google Scholar 

  19. Woods, A.: On the probability of absolute truth for And/Or formulas. Bull. Symbolic Logic 12, 3 (2006)

    Google Scholar 

  20. Zaionc, M.: On the asymptotic density of tautologies in logic of implication and negation. Rep. Math. Logic 39, 67–87 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Zaionc, M.: Probability distribution for simple tautologies. Theor. Comput. Sci. 355(2), 243–260 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Grygiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bendkowski, M., Grygiel, K., Zaionc, M. (2015). Asymptotic Properties of Combinatory Logic. In: Jain, R., Jain, S., Stephan, F. (eds) Theory and Applications of Models of Computation. TAMC 2015. Lecture Notes in Computer Science(), vol 9076. Springer, Cham. https://doi.org/10.1007/978-3-319-17142-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17142-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17141-8

  • Online ISBN: 978-3-319-17142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics