Abstract
We present some new consequences of the hypothesis that \(\mathbf {P}\) can be computed by fixed polynomial-size circuits since [Lipton SCTC 94]. For instance, we show that the hypothesis implies that some small circuit family and BPP machines cannot be fooled by any complexity-theoretic pseudorandom generator \(G: \{0,1\}^{\varTheta (\log n)}\) to \(\{0,1\}^{n}\), which means the known derandomization argument of \(\mathbf {BPP}=\mathbf {P}\) no longer works. It also implies the existence of 2-round public-coin zero-knowledge proofs for \(\mathbf {NP}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)
Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowledge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)
Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations. In: IEEE Conference on Computational Complexity, pp. 8–12. IEEE Computer Society (1998)
Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293. IEEE Computer Society (2000)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49. IEEE Computer Society (2013)
Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for np. J. Cryptol. 9(3), 167–190 (1996)
Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Impagliazzo, R., Wigderson, A.: P = BPP if e requires exponential circuits: derandomizing the xor lemma. In: Leighton, F.T., Shor, P.W. (eds.) STOC, pp. 220–229. ACM (1997)
Iwama, K., Morizumi, H.: An explicit lower bound of 5\(n\)-\(o\)(\(n\)) for boolean circuits. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer, Heidelberg (2002)
Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control 55(1–3), 40–56 (1982)
Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity classes. In: Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J. (eds.) STOC, pp. 302–309. ACM (1980)
Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008)
Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. Cryptology ePrint Archive, Report 2014/925 (2014). http://eprint.iacr.org/
Lipton, R.J.: Some consequences of our failure to prove non-linear lower bounds on explicit functions. In: Structure in Complexity Theory Conference, pp. 79–87. IEEE Computer Society (1994)
Santhanam, R.: Circuit lower bounds for merlin-arthur classes. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 275–283. ACM (2007)
Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-random generator. In: FOCS, pp. 648–657. IEEE Computer Society (2001)
Umans, C.: Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci. 67(2), 419–440 (2003)
Vinodchandran, N.V.: A note on the circuit complexity.In: Electronic Colloquium on Computational Complexity (ECCC) (056) (2004)
Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: Schulman, L.J. (ed.) STOC, pp. 231–240. ACM (2010)
Acknowledgments
The author is grateful to the reviewers of TAMC 2015 for their detailed and useful comments. This work is supported by the National Natural Science Foundation of China (Grant No. 61100209) and Doctoral Fund of Ministry of Education of China (Grant No. 20120073110094).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ding, N. (2015). Some New Consequences of the Hypothesis That P Has Fixed Polynomial-Size Circuits. In: Jain, R., Jain, S., Stephan, F. (eds) Theory and Applications of Models of Computation. TAMC 2015. Lecture Notes in Computer Science(), vol 9076. Springer, Cham. https://doi.org/10.1007/978-3-319-17142-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-17142-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17141-8
Online ISBN: 978-3-319-17142-5
eBook Packages: Computer ScienceComputer Science (R0)