Skip to main content

Input-State-Output Representation of Convolutional Product Codes

  • Conference paper
Coding Theory and Applications

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 3))

  • 1231 Accesses

Abstract

In this paper, we present an input-state-output representation of a convolutional product code; we show that this representation is non minimal. Moreover, we introduce a lower bound on the free distance of the convolutional product code in terms of the free distance of the constituent codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bossert, M., Medina, C., Sidorenko, V.: Encoding and distance estimation of product convolutional codes. In: Proceedings of the 2005 IEEE International Symposium on Information Theory (ISIT 2005), Adelaide, pp. 1063–1066. IEEE (2005). doi:10.1109/ISIT.2005.1523502

  2. Climent, J.J., Herranz, V., Perea, C.: A first approximation of concatenated convolutional codes from linear systems theory viewpoint. Linear Algebr. Appl. 425, 673–699 (2007). doi:10.1016/j.laa.2007.03.017

    Article  MathSciNet  MATH  Google Scholar 

  3. Elias, P.: Error free coding. Trans. IRE Prof. Group Inf. Theory 4(4), 29–37 (1954)

    Article  MathSciNet  Google Scholar 

  4. Herranz, V.: Estudio y construccin de cdigos convolucionales: Cdigos perforados, cdigos concatenados desde el punto de vista de sistemas. Ph.D. thesis, Departamento de Estadstica, Matemticas e Informtica, Universidad Miguel Hernndez, Elche (2007)

    Google Scholar 

  5. Hutchinson, R., Rosenthal, J., Smarandache, R.: Convolutional codes with maximum distance profile. Syst. Control Lett. 54(1), 53–63 (2005). doi:10.1016/j.sysconle.2004.06.005

    Article  MathSciNet  MATH  Google Scholar 

  6. Johannesson, R., Wan, Z.X.: A linear algebra approach to minimal convolutional encoders. IEEE Trans. Inf. Theory 39(4), 1219–1233 (1993). doi:10.1109/18.243440

    Article  MathSciNet  MATH  Google Scholar 

  7. Justesen, J.: New convolutional code constructions and a class of asymptotically good time-varying codes. IEEE Trans. Inf. Theory 19(2), 220–225 (1973). doi:10.1109/TIT.1973.1054983

    Article  MathSciNet  MATH  Google Scholar 

  8. Justesen, J.: An algebraic construction of rate 1∕ν convolutional codes. IEEE Trans. Inf. Theory 21(5), 577–580 (1975). doi:10.1109/TIT.1975.1055436

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  10. Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19(1), 101–110 (1973). doi:10.1109/TIT.1973.1054936

    Article  MathSciNet  MATH  Google Scholar 

  11. Medina, C., Sidorenko, V.R., Zyablov, V.V.: Error exponents for product convolutional codes. Probl. Inf. Transm. 42(3), 167–182 (2006). doi:10.1134/S003294600603001X

    Article  MathSciNet  MATH  Google Scholar 

  12. Rosenthal, J.: An algebraic decoding algorithm for convolutional codes. Prog. Syst. Control Theory 25, 343–360 (1999). doi:10.1007/978-3-0348-8970-4_16

    Google Scholar 

  13. Rosenthal, J.: Connections between linear systems and convolutional codes. In: Marcus, B., Rosenthal, J. (eds.) Codes, Systems and Graphical Models. The IMA Volumes in Mathematics and its Applications, vol. 123, pp. 39–66. Springer, New York (2001). doi:10.1007/978-1-4613-0165-3_2

    Chapter  Google Scholar 

  14. Rosenthal, J., Smarandache, R.: Construction of convolutional codes using methods from linear systems theory. In: Proccedings of the 35th Allerton Conference on Communications, Control and Computing, Urbana, pp. 953–960. Allerton House, Monticello (1997)

    Google Scholar 

  15. Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes. Appl. Algebra Eng. Commun. Comput. 10(1), 15–32 (1999). doi:10.1007/s002000050120

    Article  MathSciNet  MATH  Google Scholar 

  16. Rosenthal, J., York, E.V.: BCH convolutional codes. IEEE Trans. Inf. Theory 45(6), 1833–1844 (1999). doi:10.1109/18.782104

    Article  MathSciNet  MATH  Google Scholar 

  17. Rosenthal, J., Schumacher, J.M., York, E.V.: On behaviors and convolutional codes. IEEE Trans. Inf. Theory 42(6), 1881–1891 (1996). doi:10.1109/18.556682

    Article  MathSciNet  MATH  Google Scholar 

  18. Sripimanwat, K. (ed.): Turbo Code Applications. A Journey from a Paper to Realization. Springer, Dordrecht (2005). doi:10.1007/1-4020-3685-X

    Google Scholar 

  19. Tanner, R.M.: Convolutional codes from quasicyclic codes: a link between the theories of block and convolutional codes. Technical Report USC-CRL-87-21, University of California, Santa Cruz (1987)

    Google Scholar 

  20. York, E.V.: Algebraic description and construction of error correcting codes: a linear systems point of view. Ph.D. thesis, Department of Mathematics, University of Notre Dame, Notre Dame (1997)

    Google Scholar 

  21. Zyablov, V., Shavgulidze, S., Skopintsev, O., Hst, S., Johannesson, R.: On the error exponent for woven convolutional codes with outer warp. IEEE Trans. Inf. Theory 45(5), 1649–1653 (1999). doi:10.1109/18.771237

    Article  MATH  Google Scholar 

  22. Zyablov, V.V., Shavgulidze, S., Johannesson, R.: On the error exponent for woven convolutional codes with inner warp. IEEE Trans. Inf. Theory 47(3), 1195–1199 (2001). doi:10.1109/18.915681

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Spanish grant MTM2011-24858 of the Ministerio de Ciencia e Innovacin of the Gobierno de Espaa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan-Josep Climent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Climent, JJ., Herranz, V., Perea, C. (2015). Input-State-Output Representation of Convolutional Product Codes. In: Pinto, R., Rocha Malonek, P., Vettori, P. (eds) Coding Theory and Applications. CIM Series in Mathematical Sciences, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-17296-5_10

Download citation

Publish with us

Policies and ethics