Skip to main content

Weakening the Isolation Assumption of Tamper-Proof Hardware Tokens

  • Conference paper
Information Theoretic Security (ICITS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9063))

Included in the following conference series:

Abstract

Recent results have shown the usefulness of tamper-proof hardware tokens as a setup assumption for building UC-secure two-party computation protocols, thus providing broad security guarantees and allowing the use of such protocols as buildings blocks in the modular design of complex cryptography protocols. All these works have in common that they assume the tokens to be completely isolated from their creator, but this is a strong assumption. In this work we investigate the feasibility of cryptographic protocols in the setting where the isolation of the hardware token is weakened.

We consider two cases: (1) the token can relay messages to its creator, or (2) the creator can send messages to the token after it is sent to the receiver. We provide a detailed characterization for both settings, presenting both impossibilities and information-theoretically secure solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, S., Ananth, P., Goyal, V., Prabhakaran, M., Rosen, A.: Lower bounds in the hardware token model. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 663–687. Springer, Heidelberg (2014)

    Google Scholar 

  2. Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Rothblum, G.N.: Program obfuscation with leaky hardware. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 722–739. Springer, Heidelberg (2011)

    Google Scholar 

  3. Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

    Google Scholar 

  4. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011)

    Google Scholar 

  5. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science, Las Vegas, Nevada, USA, October 14–17, pp. 136–145. IEEE Computer Society Press (2001)

    Google Scholar 

  6. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

    Google Scholar 

  7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Google Scholar 

  8. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S. (Efficient) universally composable oblivious transfer using a minimal number of stateless tokens. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg (2014)

    Google Scholar 

  9. Cramer, R., Pedersen, T.P.: Improved privacy in wallets with observers (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 329–343. Springer, Heidelberg (1994)

    Google Scholar 

  10. Dachman-Soled, D., Fleischhacker, N., Katz, J., Lysyanskaya, A., Schröder, D.: Feasibility and infeasibility of secure computation with malicious PUFs. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 405–420. Springer, Heidelberg (2014)

    Google Scholar 

  11. Damgård, I., Nielsen, J.B., Wichs, D.: Universally composable multiparty computation with partially isolated parties. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 315–331. Springer, Heidelberg (2009)

    Google Scholar 

  12. Damgård, I., Scafuro, A.: Unconditionally secure and universally composable commitments from physical assumptions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 100–119. Springer, Heidelberg (2013)

    Google Scholar 

  13. Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 164–181. Springer, Heidelberg (2011)

    Google Scholar 

  14. Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing resettable UC-functionalities with untrusted tamper-proof hardware-tokens. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 642–661. Springer, Heidelberg (2013)

    Google Scholar 

  15. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic tamper-proof (ATP) security: Theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)

    Google Scholar 

  16. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

    Google Scholar 

  17. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge PCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 173–190. Springer, Heidelberg (2010)

    Google Scholar 

  18. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

    Google Scholar 

  19. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)

    Google Scholar 

  20. Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)

    Google Scholar 

  21. Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-proof tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327–342. Springer, Heidelberg (2010)

    Google Scholar 

  22. Moran, T., Segev, G.: David and Goliath commitments: UC computation for asymmetric parties using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

    Google Scholar 

  23. Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computation with (malicious) physically uncloneable functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer, Heidelberg (2013)

    Google Scholar 

  24. Pappu, R.S.: Physical One-Way Functions. PhD thesis, MIT (2001)

    Google Scholar 

  25. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Google Scholar 

  26. Prabhakaran, M., Sahai, A., Wadia, A.: Secure computation using leaky tokens. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 907–918. Springer, Heidelberg (2014)

    Google Scholar 

  27. Rührmair, U.: Oblivious transfer based on physical unclonable functions. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 430–440. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Dowsley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dowsley, R., Müuller-Quade, J., Nilges, T. (2015). Weakening the Isolation Assumption of Tamper-Proof Hardware Tokens. In: Lehmann, A., Wolf, S. (eds) Information Theoretic Security. ICITS 2015. Lecture Notes in Computer Science(), vol 9063. Springer, Cham. https://doi.org/10.1007/978-3-319-17470-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17470-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17469-3

  • Online ISBN: 978-3-319-17470-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics