Skip to main content

On Zero-Knowledge with Strict Polynomial-Time Simulation and Extraction from Differing-Input Obfuscation for Circuits

  • Conference paper
  • 539 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9063))

Abstract

This paper investigates the exact round complexity of zero-knowledge arguments of knowledge (ZKAOK) with strict-polynomial-time simulation and extraction. Previously, Barak and Lindell [STOC 02] presented a constant-round such ZKAOK. With the parallel technique by Ostrovsky and Visconti [ECCC 12] for implementing Barak’s zero-knowledge [FOCS 01] in 6 rounds, the Barak-Lindell ZKAOK can be implemented in, we believe, 7 rounds, which achieves the best exact round complexity for such ZKAOK from reasonable assumptions.

Recently, Pandey et al. [ePrint 13] proposed a 4-round (concurrent) ZK with strict-polynomial-time simulation based on differing-input obfuscation for machines. Based on their construction, Ding [ISC 14] presented a 4-round ZKAOK with strict-polynomial-time simulation and extraction. However, the known construction of differing-input obfuscation for machines uses knowledge assumptions which are too strong. So an interesting question is whether we can reduce the round complexity of such ZKAOK without using differing-input obfuscation for machines.

In this paper we show that based on differing-input obfuscation for some circuit samplers and other reasonable assumptions, there exists a 6-round ZKAOK for NP with strict-polynomial-time simulation and extraction. Importantly, the assumption of differing-input obfuscation for circuits does not use any knowledge assumption and thus is mild. Moreover, we note that the auxiliary inputs output by the circuit samplers in our construction are public coins and perfectly-hiding commitments, which is quite natural. So this assumption, in our view, could be considered reasonable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive 2013, 689 (2013)

    Google Scholar 

  2. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)

    Google Scholar 

  3. Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE Conference on Computational Complexity, pp. 194–203 (2002)

    Google Scholar 

  4. Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In: Reif, J.H. (ed.) STOC, pp. 484–493. ACM (2002)

    Google Scholar 

  5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) Advances in Cryptology - CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

    Google Scholar 

  6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for snarks and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 111–120. ACM (2013)

    Google Scholar 

  7. Blum, M.: Coin flipping by telephone. In: Gersho, A., (ed.) CRYPTO, pp. 11–15. U. C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE Report No 82-04 (1981)

    Google Scholar 

  8. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, pp. 1444–1451 (1987)

    Google Scholar 

  9. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

    Article  MATH  Google Scholar 

  10. Crescenzo, G.D., Persiano, G., Visconti, I.: Constant-round resettable zero knowledge with concurrent soundness in the bare public-key model. In: Franklin DBLP:conf/crypto/2004, pp. 237–253, http://dx.doi.org/10.1007/978-3-540-28628-8_15

  11. Ding, N.: Obfuscation-based non-black-box extraction and constant-round zero-knowledge arguments of knowledge. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 120–139. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Aho, A.V. (ed.) STOC, pp. 210–217. ACM (1987)

    Google Scholar 

  13. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Ortiz, H. (ed.) STOC, pp. 416–426. ACM (1990)

    Google Scholar 

  14. Fischlin, M.: Trapdoor Commitment Schemes and Their Applications. Ph.D. thesis, Fachbereich Mathematik Johann Wolfgang Goethe-Universit at Frankfurt am Main (2001)

    Google Scholar 

  15. Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49. IEEE Computer Society (2013)

    Google Scholar 

  17. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-662-44371-2_29

    Chapter  Google Scholar 

  18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)

    Google Scholar 

  19. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptology 9(3), 167–190 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: FOCS, pp. 174–187. IEEE Computer Society (1986)

    Google Scholar 

  22. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431–473 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  25. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. Cryptology ePrint Archive, Report 2014/942 (2014), http://eprint.iacr.org/

  26. Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin DBLP:conf/crypto/2004, pp. 335–354, http://dx.doi.org/10.1007/978-3-540-28628-8_21

  28. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991)

    Google Scholar 

  29. Lindell, Y.: A note on constant-round zero-knowledge proofs of knowledge. J. Cryptology 26(4), 638–654 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance. Electronic Colloquium on Computational Complexity (ECCC) 19, 164 (2012)

    Google Scholar 

  31. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simulation and four message concurrent zero knowledge for np. Cryptology ePrint Archive, Report 2013/754 (2013), http://eprint.iacr.org/

  32. Tompa, M., Woll, H.: Random self-reducibility and zero knowledge interactive proofs of possession of information. In: FOCS, pp. 472–482. IEEE Computer Society (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ding, N. (2015). On Zero-Knowledge with Strict Polynomial-Time Simulation and Extraction from Differing-Input Obfuscation for Circuits. In: Lehmann, A., Wolf, S. (eds) Information Theoretic Security. ICITS 2015. Lecture Notes in Computer Science(), vol 9063. Springer, Cham. https://doi.org/10.1007/978-3-319-17470-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17470-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17469-3

  • Online ISBN: 978-3-319-17470-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics