Skip to main content

Batch Blind Signatures on Elliptic Curves

  • Conference paper
Information Security Practice and Experience (ISPEC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9065))

Abstract

Blind signature is a fundamental tool in electronic cash. In most existing blind signature schemes, both the signer and the verifier need to take expensive modular exponentiations. This situation is deteriorated in significant monetary transactions in which a large number of (multi-)exponentiations need to be calculated. This paper proposes batch blind signature to reduce the computation overheads at both the signer and the verifier sides in blind signatures on elliptical curves. To this end, we first propose a batch multi-exponentiation algorithm that allows a batch of multi-base exponentiations on elliptic curves to be processed simultaneously. We next apply our batch multi-exponentiation algorithm to speed up the Okamoto-Schnorr blind signature scheme in both the signing and the verification procedures. Specifically, the proposed algorithm is exploited for generating blind signatures so that multiple messages can be signed in a batch for sake of saving computation costs. The algorithm is further employed in the verification process, which gives a different batch signature verification approach from the existing batch verification algorithm. An attracting feature of our approach is that, unlike existing batch verification signature approach, our approach does distinguish all valid signatures from a batch purported signatures (of correct and erroneous ones). This is desirable in e-cash systems where a signature represents certain value of e-cash and any valid signature should not passed up. The experimental results show that, compared with acceleration with existing simultaneous exponentiation algorithm, our batch approach is about 55% and 45% more efficient in generating and verifying blind signatures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agnew, G.B., Mullin, R.C., Vanstone, S.A.: Fast Exponentiation in GF(2n). In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 251–255. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  2. Arno, S., Wheeler, F.S.: Signed Digit Representations of Minimal Hamming Weight. IEEE Transactions on Computers 42(8), 1007–1010 (1993)

    Article  Google Scholar 

  3. Avanzi, R.M.: On multi-exponentiation in cryptography. Cryptology ePrint Archive, Report 2002/154 (2002)

    Google Scholar 

  4. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Bos, J.N.E., Coster, M.J.: Addition Chain Heuristics. In: Brassard, G. (ed.) Advances in Cryptology–CRYPTO 1989. LNCS, vol. 435, pp. 400–407. Springer, Heidelberg (1990)

    Google Scholar 

  6. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast Exponentiation with Precomputation (Extended Abstract). In: Rueppel, R.A. (ed.) Advances in Cryptology–EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)

    Google Scholar 

  7. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch Verification of Short Signatures. Journal of Cryptology 25(4), 723–747 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaum, D.: Blind Signatures for Untraceable Payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology–CRYPTO 1982, pp. 199–203. Springer US (1983)

    Google Scholar 

  9. Cheon, J.H., Kim, Y., Yoon, H.: A New ID-based Signature with Batch Verification. Cryptology ePrint Archive, Report 2004/131 (2004)

    Google Scholar 

  10. Chung, B., Hur, J., Kim, H., Hong, S.M., Yoon, H.: Improved batch exponentiation. Information Processing Letters 109(15), 832–837 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Complexity and fast algorithms for multiexponentiations. IEEE Transactions on Computers 49(2), 141–147 (2000)

    Article  MathSciNet  Google Scholar 

  12. Downey, P., Leong, B., Sethi, R.: Computing sequences with addition chains. SIAM Journal on Computing 10(3), 638–646 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology–CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Google Scholar 

  14. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical Short Signature Batch Verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 309–324. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27(1), 129–146 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hong, S.-M., Oh, S.-Y., Yoon, H.: New Modular Multiplication Algorithms for Fast Modular Exponentiation. In: Maurer, U.M. (ed.) Advances in Cryptology–EUROCRYPT 1996. LNCS, vol. 1070, pp. 166–177. Springer, Heidelberg (1996)

    Google Scholar 

  17. Joye, M., Yen, S.M.: Optimal left-to-right binary signed-digit recoding. IEEE Transactions on Computers 49(7), 740–748 (2000)

    Article  MATH  Google Scholar 

  18. Knuth, D.E.: The Art of Computer Programming–Volume 2: Seminumerical Algorithms. Addison-Wesley Professional (2014)

    Google Scholar 

  19. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C.T., Hwang, M.S., Chu, Y.P.: A secure and efficient communication scheme with authenticated key establishment and privacy preserving for vehicular ad hoc networks. Computer Communications 31(12), 2803–2814 (2008)

    Article  Google Scholar 

  21. Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In: Desmedt, Y.G. (ed.) Advances in Cryptology–CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)

    Google Scholar 

  22. Lou, D.C., Lai, J.C., Wu, C.L., Chang, T.J.: An efficient montgomery exponentiation algorithm by using signed-digit-recoding and folding techniques. Applied Mathematics and Computation 185(1), 31–44 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. M’Raïhi, D., Naccache, D.: Batch Exponentiation: A Fast DLP-based Signature Generation Strategy. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, CCS 1996, pp. 58–61. ACM, New York (1996)

    Google Scholar 

  27. Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  28. Pippenger, N.: On the evaluation of powers and monomials. SIAM Journal on Computing 9(2), 230–250 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. de Rooij, P.: Efficient exponentiation using precomputation and vector addition chains. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  30. Solinas, J.: Low-weight binary representations for pairs of integers. Tech. rep., CORR 2001-41, Department of C&O, University of Waterloo (2001)

    Google Scholar 

  31. Stinson, D.R.: Some Observations on Parallel Algorithms for Fast Exponentiation in GF(2^n). SIAM Journal on Computing 19(4), 711–717 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Y., Wu, Q., Wong, D.S., Qin, B., Chow, S.S.M., Liu, Z., Tan, X.: Securely Outsourcing Exponentiations with Single Untrusted Program for Cloud Storage. In: KutyÅ‚owski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol. 8712, pp. 326–343. Springer, Heidelberg (2014)

    Google Scholar 

  33. Yen, S.M., Laih, C.S., Lenstra, A.K.: Multi-exponentiation (cryptographic protocols). Computers and Digital Techniques 141(6), 325–326 (1994)

    Article  MATH  Google Scholar 

  34. Zhang, C., Lu, R., Lin, X., Ho, P.-H., Shen, X.: An efficient identity-based batch verification scheme for vehicular sensor networks. In: The 27th Conference on Computer Communications on INFOCOM 2008, pp. 816–824. IEEE (April 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sun, Y., Wu, Q., Qin, B., Wang, Y., Liu, J. (2015). Batch Blind Signatures on Elliptic Curves. In: Lopez, J., Wu, Y. (eds) Information Security Practice and Experience. ISPEC 2015. Lecture Notes in Computer Science(), vol 9065. Springer, Cham. https://doi.org/10.1007/978-3-319-17533-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17533-1_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17532-4

  • Online ISBN: 978-3-319-17533-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics