Abstract
A great challenge in privacy preservation is to trade off two important issues: data utility and privacy preservation, in publication of dataset which usually contains sensitive information. Anonymization is a well-represent approach to achieve this, and there exist several anonymity models. Most of those models mainly focuses on protecting privacy exerting identical protection for the whole table with pre-defined parameters. As a result, it could not meet the diverse requirements of protection degrees varied with different sensitive values.Motivated by this, this paper firstly introduces an a-diversity k-anonymity model (ADKAM) to satisfy the diversity deassociation for sensitive values, ant then designs a framework based on an improved microaggregation algorithm, as an alternative to generalization/ suppression to achieve anonymization. By using this framework, we improve the data utility and disclosure risk of privacy disclosure. We conduct several experiments to validate our schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Domingo-Ferrer, J., MartÃnez-Ballesté, A., Mateo-Sanz, J.M., Sebé, F.: Efficient multivariate data-oriented microaggregation. The VLDB Journal 15(4), 355–369 (2006)
Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation for statistical disclosure control. IEEE Transactions on Knowledge and Data Engineering 14(1), 189–201 (2002)
Domingo-Ferrer, J., Sebé, F., Solanas, A.: A polynomial-time approximation to optimal multivariate microaggregation. Computers & Mathematics with Applications 55(4), 714–732 (2008)
Domingo-Ferrer, J., Solanas, A., Martinez-Balleste, A.: Privacy in statistical databases: k-anonymity through microaggregation. In: GrC, pp. 774–777 (2006)
Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogeneous k-anonymity through microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212 (2005)
Gedik, B., Liu, L.: Location privacy in mobile systems: A personalized anonymization model. In: Proceedings of 25th IEEE International Conference on Distributed Computing Systems, ICDCS 2005, pp. 620–629. IEEE (2005)
Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: Architecture and algorithms. IEEE Transactions on Mobile Computing 7(1), 1–18 (2008)
Lambert, D.: Measures of disclosure risk and harm. Journal of Official Statistics-Stockholm 9, 313–313 (1993)
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE, vol. 7, pp. 106–115 (2007)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD) 1(1), 3 (2007)
Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2004, pp. 223–228. ACM, New York (2004)
Oganian, A., Domingo-Ferrer, J.: On the complexity of optimal microaggregation for statistical disclosure control. Statistical Journal of the United Nations Economic Commission for Europe 18(4), 345–353 (2001)
Panagiotakis, C., Tziritas, G.: Successive group selection for microaggregation. IEEE Transactions on Knowledge and Data Engineering 25(5), 1191–1195 (2013)
Solanas, A., Martinez-Balleste, A., Domingo-Ferrer, J.: V-mdav: a multivariate microaggregation with variable group size. In: 17th COMPSTAT Symposium of the IASC, Rome (2006)
Soria-Comas, J., Domingo-Ferrer, J.: Probabilistic k-anonymity through microaggregation and data swapping. In: 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2012)
Soria-Comas, J., Domingo-Ferrer, J., Sánchez, D., MartÃnez, S.: Enhancing data utility in differential privacy via microaggregation-based k-anonymity. The VLDB Journal, 1–24 (2014)
Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(05), 557–570 (2002)
Truta, T.M., Vinay, B.: Privacy protection: p-sensitive k-anonymity property. In: ICDE Workshops, p. 94 (2006)
Wong, R.C.-W., Li, J., Fu, A.W.-C., Wang, K.: (α, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 754–759. ACM (2006)
Xiao, X., Tao, Y.: Personalized privacy preservation. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 229–240. ACM (2006)
Xu, Y., Wang, K., Zhang, B., Chen, Z.: Privacy-enhancing personalized web search. In: Proceedings of the 16th International Conference on World Wide Web, pp. 591–600. ACM (2007)
Yuan, M., Chen, L., Yu, P.S.: Personalized privacy protection in social networks. Proceedings of the VLDB Endowment 4(2), 141–150 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Cheng, L., Cheng, S., Jiang, F. (2015). ADKAM: A-Diversity K-Anonymity Model via Microaggregation. In: Lopez, J., Wu, Y. (eds) Information Security Practice and Experience. ISPEC 2015. Lecture Notes in Computer Science(), vol 9065. Springer, Cham. https://doi.org/10.1007/978-3-319-17533-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-17533-1_36
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17532-4
Online ISBN: 978-3-319-17533-1
eBook Packages: Computer ScienceComputer Science (R0)