Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 601))

  • 1966 Accesses

Abstract

Edge detection is one of the most commonly used operations in computer vision, image processing and pattern recognition. The efficiency of these applications depends in many cases on the quality of detected edges. A color image edge detection method based on Sobel and Interval type-2 fuzzy system IT2FSs is presented in this paper. Color images provide more information than grayscale images. Thus, more edge information is expected from a color edge detector than a grayscale edge detector. The proposed method is applied over a database of color images that include synthetic and real images. The performance of the proposed method is compared with other edge detection algorithms such as Sobel combined with type-1 fuzzy systems T1FSs and the traditional Sobel operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Torre, V., Poggio, T.A.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 147–163 (1986)

    Article  Google Scholar 

  2. Koschan, A., Abidi, M.: Detection and classification of edges in color images. Sig. Process. Mag. IEEE 22(1), 64–73 (2005)

    Article  Google Scholar 

  3. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using matlab. Prentice Hall, New Jersey (2004)

    Google Scholar 

  4. Kulkarni, A.D.: Computer vision and fuzzy neural systems. Prentice Hall, New Jersey (2001)

    Google Scholar 

  5. Sobel, I.: Camera models and perception. Ph.D. thesis, Stanford University, Stanford, CA (1970)

    Google Scholar 

  6. Mendoza, O., Melin, P., Licea, G.: A new method for edge detection in image processing using interval type-2 fuzzy logic. In: IEEE International Conference on Granular Computing (GRC 2007), p. 151 (2007)

    Google Scholar 

  7. Melin, P., Mendoza, O., Castillo, O.: An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst. Appl. 37(12), 8527–8535 (2010)

    Article  Google Scholar 

  8. Mendel, J.: Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice Hall, New Jersey (2001)

    Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets, vol. 8. Academic Press Inc., USA (1965)

    Google Scholar 

  10. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mendoza, O., Melin, P.: Quantitative evaluation of fuzzy edge detectors applied to neural networks for image recognition. Advances in research and developments in digital systems, pp. 324–335. In: Stochastic Algorithms: Foundations and Applications. Lecture Notes Computer Science, vol. 5792, pp. 169–178 (2011)

    Google Scholar 

  12. Mendoza, O., Melin, P., Licea, G.: A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf. Sci. 179(13), 2078–2101 (2009)

    Article  Google Scholar 

  13. Biswas, R., Sil, J.: An improved canny edge detection algorithm based on type-2 fuzzy sets. Procedia Technol. 4, 820–824 (2012)

    Article  Google Scholar 

  14. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Sets Syst. 160(13), 1819–1840 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)

    Article  Google Scholar 

  16. Schulte, S., De Witte, V., Kerre, E.E.: A fuzzy noise reduction method for color images. IEEE Trans. Image Process. 16(5), 1425–1436 (2007)

    Article  MathSciNet  Google Scholar 

  17. Yuksel, M.E., Basturk, A.: Application of type-2 fuzzy logic filtering to reduce noise in color images. Comput. Intell. Mag. IEEE 7(3), 25–35 (2012)

    Article  Google Scholar 

  18. Teruhisa, S., Futoki, S., Hiroshi, K., Toshiaki, O.: Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast. Remote Sens. Environ. 98(1), 21–34 (2005)

    Article  Google Scholar 

  19. Mendel, J.: Advances in type-2 fuzzy sets and systems. Inf. Sci. 177(1), 84–110 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  21. Zadeh, L.A.: Fuzzy logic. Computer 1(4), 83–93 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the MyDCI program of the Division of Graduate Studies and Research, UABC, and the financial support provided by our sponsor CONACYT contract grant number: 44,524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonzalez, C.I., Melin, P., Castro, J.R., Mendoza, O., Castillo, O. (2015). Color Image Edge Detection Method Based on Interval Type-2 Fuzzy Systems. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization. Studies in Computational Intelligence, vol 601. Springer, Cham. https://doi.org/10.1007/978-3-319-17747-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17747-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17746-5

  • Online ISBN: 978-3-319-17747-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics