Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 601))

Abstract

Fuzzy clustering algorithms are able to find the centroids and partition matrices, but are predominantly numerical, although each cluster prototype can be considered as a granule of information it continues to be a numeric value, in order to give a similar representation structure data. Granular theory and clustering algorithms can be combined to achieve this goal, resulting in granular prototypes and granular matrices of belonging and a more reflective data structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bargiela, A., Pedrycz, W., Hirota, K.: Granular prototyping in fuzzy clustering. IEEE Trans. Fuzzy Syst. 12(5), 697–709 (2004)

    Article  Google Scholar 

  2. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, Berlin (1981)

    Book  MATH  Google Scholar 

  3. Chang, X., Li, W., Farrell, J: A C-means clustering based fuzzy modeling method. In: The Ninth IEEE International Conference on Fuzzy Systems, 2000. FUZZ IEEE 2000, vol. 2, pp. 937–940 (2000)

    Google Scholar 

  4. Gacek, A.: From clustering to granular clustering: a granular representation of data in pattern recognition and system modeling. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp. 502–506, 24–28 June 2013

    Google Scholar 

  5. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of IEEE Conference on Decision and Control, San Diego, CA, pp. 761–766 (1979)

    Google Scholar 

  6. Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. Proc. IEEE 87(9), 1575–1600 (1999)

    Article  Google Scholar 

  7. Hwang, C., Rhee, F.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Trans. Fuzzy Syst. 15(1), 107–120 (2007)

    Article  Google Scholar 

  8. Iyer, N.S., Kendel, A., Schneider, M.: Feature-based fuzzy classification for interpretation of mamograms. Fuzzy Sets Syst. 114, 271–280 (2000)

    Article  MATH  Google Scholar 

  9. Karnik, N., Mendel, J.: Operations on type-2 set. Fuzzy Set Syst. 122, 327–348 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  11. Krishnapuram, R., Keller, J.: The possibilistic c-Means algorithm: Insights and recommendations. IEEE Trans. Fuzzy Sys. 4(3), 385–393 (1996)

    Article  Google Scholar 

  12. Kruse, R., Döring, C., Lesot, M.J.: Fundamentals of fuzzy clustering. In: Advances in Fuzzy Clustering and its Applications. Wiley, Chichester, pp. 3–30 (2007)

    Google Scholar 

  13. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, pp. 213–231. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  14. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  MathSciNet  Google Scholar 

  15. Pedrycz, W., Bargiela, A.: An Optimization of allocation of information granularity in the interpretation of data structures: toward granular fuzzy clustering. IEEE Trans. Syst. Man Cybern. B Cybern 42(3), 582–590 (2012)

    Article  Google Scholar 

  16. Philips, W.E., Velthuinzen, R.P., Phuphanich, S., Hall, L.O., Clark, L.P., Sibiger, M.L.: Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of hemorrhagic glioblastoma multiforme. Magn. Reson. Imaging 13(2), 277–290 (1995)

    Article  Google Scholar 

  17. Rubio, E., Castillo, O.: Interval type-2 fuzzy clustering for membership function generation. In: IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA), pp. 13–18, 16–19 Apr 2013

    Google Scholar 

  18. Yang, M.-S., Hu, Y.-J., Lin, K.C.-R., Lin, C.C.-L.: Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms. Magn. Reson. Imaging 20, 173–179 (2002)

    Article  Google Scholar 

  19. Zarandi, M.H.F., Zarinbal, M., Türksen, I.B.: Type-II fuzzy possibilistic C-mean clustering. In: IFSA/EUSFLAT Conference, pp. 30–35 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubio, E., Castillo, O. (2015). A New Proposal for a Granular Fuzzy C-Means Algorithm. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization. Studies in Computational Intelligence, vol 601. Springer, Cham. https://doi.org/10.1007/978-3-319-17747-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17747-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17746-5

  • Online ISBN: 978-3-319-17747-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics