
Visualization for Streaming Telecommunications
Networks

Rui Sarmento1,2, Mário Cordeiro1, and João Gama1,2

1 LIAAD-INESC TEC, University of Porto
2 Faculty of Economics, University Porto

Abstract. Regular services in telecommunications produce massive vol-
umes of relational data. In this work the data produced in telecommu-
nications is seen as a streaming network, where clients are the nodes
and phone calls are the edges. Visualization techniques are required for
exploratory data analysis and event detection. In social network visual-
ization and analysis the goal is to get more information from the data
taking into account actors at the individual level. Previous methods re-
lied on aggregating communities, k-Core decompositions and matrix fea-
ture representations to visualize and analyse the massive network data.
Our contribution is a group visualization and analysis technique of in-
fluential actors in the network by sampling the full network with a top-k
representation of the network data stream.

Keywords: Large Scale Social Networks Sampling; Data Streams; Telecommu-
nication Networks.

1 Motivation

The analysis of social networks that emerge from a set of phone calls using regu-
lar services from a telecommunication service provider is a demanding problem.
In these networks, a node represents a user and a phone call is represented by
an edge between two nodes. Common networks in telecommunication services
have millions of nodes and billions of edges where data from started phone calls
flows at high speed. This is the reason why these networks are complex and dif-
ficult to analyse. Sampling from large network is known to be a hard problem to
solve with typical hardware or software. State-of-the-art software and hardware
reveal some limitations to deal with networks with more than a few thousands
nodes and edges. Computational memory and power are the main constraints
to perform the visualization of large networks. Even if the software is capable of
representing a network of millions of nodes on the screen, the user may strug-
gle to gather some valuable information from the visual outcome. In this work
we propose processing the data as a stream of networked data with Landmark,
Sliding Windows and top-k algorithm applications to enhance the network visu-
alization enabling knowledge acquisition from the output. The main goal is to
sample the data stream by highlighting the top-k nodes, providing a clear insight



about the most active nodes in the network. We also present a case study of our
methods applied to Telecommunication network data with several millions of
nodes and edges. Results were obtained with a common commodity machine.
In the following section we present an overview of previous work on the sub-
ject of social network visualization and summarization, focusing on the top-k
algorithms. Section 3 describes the system architecture that was developed to
simulate social network streaming and generate visualization. Section 4 has the
details of the data case study concerning data description, algorithm develop-
ments and experiments. Finally, in Section 5, we underline major contributions
and results and propose future directions.

2 Related Work

Two common strategies for sampling are random sampling and snowball sam-
pling. In snowball sampling a starting node is selected. The network is built from
that node, starting on its 1st order connections, moving to the 2nd order con-
nections, 3rd order connection, and so on, until the network reaches the right
size for analysis. This approach is easy to implement, but has some pitfalls. It
is biased toward the part of the network sampled, and may miss other features.
Nevertheless, it is one of the most common sampling approaches. The random
sampling, randomly selects a certain percentage of nodes and keeps all edges be-
tween them. In an alternative approach, it randomly selects a certain percentage
of edges and keeps all nodes that are mentioned. The main problem with this
method is that edge sampling is biased towards high degree nodes, while node
sampling might lose some structural features of the network.

2.1 Visualization

The definition of large-scale networks regarding number of nodes or edges di-
verges. Publications may consider a large-scale network ranging from dozens of
thousands of nodes to millions of nodes and billions of edges. The main goal
of any graph visualization technique is to be visually understandable. It is also
desirable that the information is represented in a clear and objective way to con-
vey knowledge to the viewer. To achieve this goal two types of graph representa-
tion, node-link and matrix graph representations [16] may be used. Visualization
readability is highly related with the network size (number of nodes) and density
(average number of edges per node). It is known that node-link representation
has low performance with dense networks and requires aggregation methods
reducing density to increase visual comprehensibility of the output. Matrix rep-
resentation is usually combined with hierarchical aggregation [1]. Hierarchical
clustering implies grouping the nodes but not their ordering. The main goal of
this representation type is to have a fast clustering algorithm and meaningful
clusters. Matrix representation methods may also rely on the reordering of rows
and columns in the representation matrix instead of just clustering the nodes
[12]. This type of ordered matrix representation might enhance the structure



visualization because the data is more than simply clustered. The main draw-
back of this solution is that it is unfeasible for networks of millions of nodes that
need a large amount of computations for reordering the matrix. More recently,
Elmqvist et al. [7] introduced fast reordering mechanism, data aggregations and
GPU-accelerated rendering to deliver higher scalability solutions. Other solu-
tions rely on controlling the visual density of the graph view and restricting
the clustering overlap probability to low levels [20]. Moreover a new probability
based network metric was introduced by Ham et al. [10] to identify potentially
interesting or anomalous patterns in the networks.

2.2 top-k Itemsets

The problem of finding the most frequent items in a data stream S of size N is
mainly how to discover the elements ei whose relative frequency fi is higher than
a user specified support φN , with 0 ≤ φ ≤ 1 [8]. Given the space requirements
that exact algorithms addressing this problem would need [3], several algorithms
were already proposed to find the top-k frequent elements, being roughly clas-
sified into counter-based and sketch-based [19]. Counter-based techniques keep
counters for each individual element in the monitored set, which is usually a
lot smaller than the entire set of elements. When an element is identified as not
currently being monitored, various algorithms take different actions to adapt the
monitored set accordingly. Sketch-based techniques provide less rigid guarantees,
but they do not monitor a subset of elements, providing frequency estimators
for the entire set.

Simple counter-based algorithms, such as Sticky Sampling and Lossy Count-
ing, were proposed in [18], which process the stream in compressed size. Yet,
they have the disadvantage of keeping a large amount of irrelevant counters. Fre-
quent [6] keeps only k counters for monitoring k elements, incrementing each ele-
ment counter when it is observed, and decrementing all counters when a unmoni-
tored element is observed. Zeroed-counted elements are replaced by new unmon-
itored element. This strategy is similar to the one applied by Space-Saving [19],
which gives guarantees for the top-m most frequent elements. Sketch-based algo-
rithms usually focus on families of hash functions which project the counters into
a new space, keeping frequency estimators for all elements. The guarantees are
less strict but all elements are monitored. The CountSketch algorithm [3] solves
the problem with a given success probability, estimating the frequency of the el-
ement by finding the median of its representative counters, which implies sorting
the counters. Also, GroupTest method [5] employs expensive probabilistic calcu-
lations to keep the majority elements within a given probability of error. Despite
the fact of being generally accurate, its space requirements are large and no in-
formation is given about frequencies or ranking. We adopted the Space-Saving
algorithm described in [19] throughout our top-k method because it is a memory
efficient application and guarantees most active nodes which is our goal.



3 Streaming Simulation System

This section presents the streaming system to support the visualization tasks.
We briefly describe the software components and also present some example
messages and protocols used to interconnect these same components.

3.1 Components

The developed system is based primarily on a MySQL database server. With
the data conveniently indexed we used R as a language platform to work on and
to represent the data that was streaming from the database.

Another requirement is the output availability in remote locations. The best
way to do it would be to present the output in a web browser. For this task we
chose sigma.js library, a JavaScript library dedicated to graph drawing [14]. It
enables the network display on Web pages and may be used to integrate network
exploration in rich Web applications.

To connect R output to sigma.js we needed an application running on real-
time to make the bridge between the processing language and the browser. For
this task we selected node.js that enables the use of web sockets communication.
Thus, results may be published in real-time in a web browser. Joyent Inc. de-
scribes Node.js as a platform built on Chrome’s JavaScript runtime to easily con-
struct fast and scalable network applications [13]. Node.js uses an event-driven,
non-blocking I/O model that, according to the authors, makes it lightweight
and efficient, suitable for data-intensive real-time applications that run across
distributed devices. Fig. 1 represents the system architecture. The network vi-
sualization was initially executed with Gephi software, but was abandoned in a
early stage of development. Sigma.js was preferred throughout the project.

Fig. 1. Streaming System Architecture

In Fig. 1 the generation of messages in this system begins with R Language
sending HTTP requests to node.js. The HTTP requests include information
about the source and destination node that we wish to output to the final el-
ement in the chain, the user browser. After node.js receives the message from



R, it immediately produces a message through the established socket connec-
tion with sigma.js (embedded in the html page displayed in the user browser).
The number of socket connections established to node.js is equal to the num-
ber of connected browsers. If more browsers are connected to the Node.js web
server, more socket connections are established. This means that all connected
browsers are simultaneously notified via a broadcast websocket message sent by
the Node.js event dispatcher.

3.2 Landmark Windows

Algorithm 1 presents the pseudo code of the Landmark Window algorithm. This
algorithm provides the representation of all the events that occur in the network
starting at a specific timestamp, e.g., 01h48m09s on January 1st, 2012.

Algorithm 1 Landmark Pseudo-Code

Input: start, tinc . start timestamp and time increment
Output: edges
1: R← {} . data rows
2: E ← {} . edges currently in the graph
3: R← getRowsFromDB (start)
4: new time← start
5: while (R <> 0) do
6: for all edge ∈ R do
7: addEdgeToGraph(edge)
8: E ← E

⋃
{edge}

9: end for
10: new time← new time + tinc
11: R← getRowsFromDB (new time)
12: end while
13: edges← E

This type of representation is not very useful because it implies a growing
number of displayed events on the screen and decrease the comprehensibility
of the representation, as this number surpasses some thousands of events. This
landmark application is useful in other contexts, for instance, if the network
is relatively small and the goal is to check all events in the network. The top-k
application based on Landmark Window, described in Section 3.4, proved also to
be a suitable approach for large network streaming data. It enables the focus on
the influential individuals and discard less active nodes in very large networks.
The alternative option for Sliding Windows [8] presented in the next subsection
would be, in our case, incorrect because there would be a chance to remove less
recent graph nodes. Those nodes may be included in the top-K list we wish to
maintain.

Still, if the goal is to follow the evolution of full network events, the Sliding
Windows method, described in the next subsection, is better as it only outputs



the events in the current window with the size selected by the user. This op-
tion enables the visualization of large evolving networks over time and without
compromising data processing performance with large amounts of data.

3.3 Sliding Windows

Dealing with large data streams presents new challenging tasks, for instance,
dynamic sample representation of the data. The sliding window Algorithm 2
may be used to address this issue. This sliding window is defined as a data
structure with fixed number of registered events [8]. In our case study each event
is a call between any particular pair of nodes. As these events have timestamps,
the time period between the first call and the last call in the window is easily
computed. The input parameters of this algorithm are the start date and time
and the maximum number of events/calls that the sliding window can have. The
SNA (Social Network Analysis) model used in this application is full network
directed because any nodes in the network are represented in the screen, for the
particular window of events [11].

Algorithm 2 Sliding Window Pseudo-Code

Input: start, wsize, tinc . start timestamp, window size and time increment
Output: edges
1: R← {} . data rows
2: E ← {} . edges currently in the graph
3: V ← {} . buffer to manage removal of old edges
4: R← getRowsFromDB (start)
5: new time← start
6: p← {}
7: while (R <> 0) do
8: for all edge ∈ R do
9: addEdgeToGraph(edge)

10: E ← E
⋃
{edge}

11: k ← 1 + (p mod wsize)
12: old edge← V [k]
13: removeEdgeFromGraph(old edge)
14: E ← E \ {old edge}
15: V [k]← edge
16: p← p + 1
17: end for
18: new time← new time + tinc
19: R← getRowsFromDB (new time)
20: end while
21: edges← E



3.4 top-k Networks

Algorithm 3 represents our version of the top-k Space-Saving algorithm. The
Space-Saving algorithm is one of the most efficient, among one-pass algorithms,
to find the most frequently occurring items in a streaming data. In our case
study, we are interested in continuously maintaining the top-k most active nodes.
Activity can be defined as making a call, receiving a call, or communications pairs
of users.

Algorithm 3 top-k Pseudo-Code for outgoing calls inspection

Input: start, k param, tinc . start timestamp, k parameter and time increment
Output: edges
1: R← {} . data rows
2: E ← {} . edges currently in the graph
3: R← getRowsFromDB (start)
4: new time← start
5: while (R <> 0) do
6: for all edge ∈ R do
7: before← getTopKNodes()
8: updateTopNodesList(edge) . update node list counters
9: after ← getTopKNodes()

10: maintained← before
⋂

after
11: removed← before \maintained
12: for all node ∈ after do . add top-k edges
13: if node ⊂ edge then
14: addEdgeToGraph(edge)
15: E ← E

⋃
{edge}

16: end if
17: end for
18: for all node ∈ removed do . remove non top-k nodes and edges
19: removeNodeFromGraph(node)
20: for all edge ∈ node do
21: E ← E \ {edge}
22: end for
23: end for
24: end for
25: new time← new time + tinc
26: R← getRowsFromDB (new time)
27: end while
28: edges← E

The input parameters for this setting are the start date and time and also
the maximum number of nodes to be represented (the K parameter). This top-
k application enables the representation of the evolving network of the top-k
nodes, from the inputted start date and time. The user may also inspect the
top-k network of the nodes that initiate connections, the nodes that receive
connections and the top-k representation of the A→B connections.



4 Case Study

This section describes the attributes of our large scale data and provides an
overview on the application of our method to real data. Telecommunication net-
works generate large amount of continuous data from phone users and network
equipment. In this case study, we used CDR (call detail records) log files retrieved
from equipment in different geographic locations. The network data has roughly
10 million calls per day. This represents an average of 6 million of unique users
per day. Each edge represents a call between A and B phone equipments (nodes).
The dataset consisted in 135 days of anonymized data. For each edge/call there is
a timestamp information with the date and time, with resolution to the second,
representing the beginning of the call. The volume of data ranges from 10 up to
280 calls per second usually around mid-night and mid-day time, respectively.

4.1 Data Description

The first processing step was the aggregation of the number of calls from A→B
per day, that returned the distribution of the dataset. This operation was made
with a MySql database query by selecting pairs of numbers (caller and receiver)
and counting the occurrences of those pairs in the database. The results denote
a compressed representation of the original network i.e. without repeated edges.
There is evidence the distribution of the aggregated data might have a power
law distribution [2] as can be seen in Fig. 2(left). Thus, it might represent few
highly frequent calls and many infrequent calls.

Fig. 2. A→B Calls Distribution (left) and respective log-log plot (right)

We then generated the log-log representation of the distribution, per day of
the aggregated data as seen in Fig. 2(right). This representation is an approxi-
mation to a monomial.

For the incoming and outgoing call distributions of the original data, a mono-
mial is also obtained with this representation method. Thus, there is evidence
that all distributions follow a power law distribution.



Fig. 3. Distribution of the Received Calls (left) and respective log-log plot (right)

The power law hypothesis were tested with the poweRlaw R package, that
follows applications of power laws hypothesis testing and generation from [4],
and the method described in [9]. From now on, we define the caller identifier
as the main node for our top-k model and we will only provide results and
experiments for this situation. Therefore, the weight of each node is related to
the number of outgoing calls, i.e. the number of edges representing initiated calls
by the intended network node. Fig. 4 illustrates this hypothesis test for power
law distribution presenting the mean estimate of parameters xmin, α and the
p-value, being xmin the lower bound of the power law distribution. Estimation
parameter α is the scaling parameter (“Par 1” in Fig. 4) and α > 1. The dashed-
lines represent 95% confidence intervals. Testing the null hypothesis H0 that the
original data is generated from a power law distribution the observed p-value is
0.1, hence we cannot reject it because the p-value is higher than 0.05.

Fig. 4. Original Network - Caller power law Distribution hypothesis Test

The Figures 2 through 4 provide a visualization of an important data at-
tribute, which is the large amount of isolated calls between some pairs of nodes
and a low number of repeated calls between them. With the previous results it is
acceptable to disregard the isolated calls to improve the quality of visualization
and analysis, as will later be described for the top-k visualization method.



4.2 Sliding Windows Visualization

Fig. 5. Visualization with Sliding Window approach

Algorithm 2 returns the representation in Fig. 5. It shows a window contain-
ing 1000 events/calls for a period of time beginning at 00h01m52s and ending
at 00h02m40s. Several users are represented by bigger nodes, meaning more
outgoing calls by those particular identifiers. The evolution of the network is
represented and it shows that the anonymous brown, dark blue and light blue
are the callers with more influence in this window of time.

It is also note worthy the visible connection between the dark blue caller
and the brown user being established in the represented window. Fig. 5 also
displays the average data speed in the window, i.e. the speed was approximately
22 calls per second. This average data speed is calculated regarding number of
events/calls in the window of events and the time period between the events, rep-
resented in the visualized window. Throughout other experimental conditions,
e.g., with windows around the 12h timestamp, we experienced data speed in-
creases with more calls per second. Considering these data speed changes and af-
ter several experiments with window size parameter we concluded that it should
not be smaller than 100 events and larger than 1000 events. With the minimum
data speed conditions, 100 events represents a window period of around 10 sec-
onds of events. With the maximum data speed and a window of 1000 events, it
represents around 5 seconds of calls data. Less than 100 events with this data
represents changes in the window, that are too fast to be visually comprehen-
sible, and more than 1000 events represents too much events, decreasing visual
interpretability of the final representation.



Fig. 6. Visualization with Sliding Window approach (second printscreen, at a later
time)

Fig. 6 represents the window between 00h02m41s and 00h03m30s. Progress-
ing from Fig. 5, we can visually check the evolution of the network and conclude
that the anonymous brown, dark blue and light blue are the callers with more
influence in this window of 1000 events.

4.3 top-k Landmark Window

The program started running at midnight of the first day of July 2012. Fig. 7
represents the output of the Top-100 callers with more outgoing calls until
00h44m33s, extracted by Algorithm 3.

Fig. 8 represents the output of the Top-100 anonymous callers with higher
number of outgoing calls. The figure displays the screen with the layout algorithm
running. Only algorithm results collected until 01h09m45s are represented.

ForceAtlas2 was the selected layout algorithm. This layout algorithm has
some good characteristics [15, 17]. These special ForceAtlas2 characteristics are:

– Continuous layout algorithm, that allows the manipulation of the graph while
it is being rendered. It is based on the linear-linear model where the attrac-
tion and repulsion are proportional to distance between nodes. The conver-
gence of the graph is considered to be very efficient once that features an
unique adaptive convergence speed.

– Proposes summarized settings, focused on what impacts the shape of the
graph (scaling, gravity. . . ). It is suitable for large graph layout because it
features a Barnes Hut optimization (performance drops less with big graphs).



Fig. 7. Top-100 numbers with more outgoing calls and their connections without run-
ning the layout algorithm

Fig. 8. Top-100 numbers with more calls and their connections with layout algorithm
running



The ForceAtlas2 layout algorithm, although being reported to be slow for
more than dozens of thousands nodes, is capable of rendering the layout of the
used windows sizes throughout all our experiences. As explained before, it is
expected, with our data, that the windows size do not get higher than 1000
events for the Sliding Windows representations and for a K parameter lower
than 200 callers in the top-k representation. Higher parameters may jeopardize
the interpretability of the representation. The layout algorithm also becomes
slow.

4.3.1 top-k Sampling Attributes Considering that the majority of data
includes isolated calls between two nodes our goal is to obtain a sampled version
of the data providing the network of most active callers in the network. For that
we selected the Space-Saving algorithm [19] with different settings and different
k parameter i.e. 10000, 50000 and 100000. We obtained these top-K respective
networks from database querying.

Fig. 9 represents the hypothesis test for power law distribution regarding
the top-10000 network and the most active caller identifiers. For the top-10000
network of the caller phone numbers the observed p-value is 0.82. Therefore, we
cannot reject the hypothesis H0 at the 95% confidence level. This result provides
evidence the top-k sampling method is non-biased regarding the original data
distribution.

Fig. 9. Top-10000 Network - Caller power law Distribution hypothesis Test

Fig. 10 represents the hypothesis test for power law distribution regarding the
top-50000 network and for the 50000 most active callers. For the top-50000 net-
work of the caller identifiers, the observed p-value is 0.16. Thus, we cannot reject
the hypothesis H0 at the 95% confidence level. This result provides even more
evidence the top-k sampling method maintains the original data distribution.

We also did the hypothesis test for power law distribution for the top-100000
network regarding 100000 most active callers. Testing the null hypothesis H0

that the top-100000 network for the caller identifiers is generated from a power
law distribution the observed p-value is 0 so we cannot accept it because it is
lower than 0.05.



Fig. 10. Top-50000 Network - Caller power law Distribution hypothesis Test

5 Conclusions

This paper presents a new method for Large Scale Telecommunications Networks
visualization. With the use of data timestamps we approach the data from a
streaming point of view and visualize samples of data in a way that is both
understandable to the human analyst and also enables knowledge extraction
from the visual output.

Landmark Windows experiments proved to suffer from low visual compre-
hensibility of the network and memory issues with the software. This happens
when the number of nodes or edges exceeds some dozens of thousands. With our
data this number of nodes represented in the screen typically corresponds to a
time period of just a few minutes. Sliding Windows were used as a way to con-
tinuously check for the full network events. Sliding Windows enables continuous
inspection of the network time evolution. The top-k application is a suitable ap-
proach to our data that presents a power law distribution. This enables the focus
on the influential individuals and discard isolated calls which are the majority
of calls in our data. Concerning its computational requirements, our method for
evolving networks visualization, especially with Sliding Windows or the top-k
model may be considered a light method to visualize massive streaming net-
works. This simulation method enables a data stream visualization close to the
node-link level using a common commodity machine. This is a different approach
from previous representations mentioned in the related work section. Previous
methods use hierarchical aggregation of features, for example node communities.

In future work, we could also perform community detection and display the
network with additional information at the node-level. This may be applied to
communities, centrality measures for the streaming data.

Future work also includes testing the models with time decay factors that
enable the use of the Landmark model, increasing the weight of recent data and
disregarding old data. It would also be important for the real-time data update
that is displayed. The mentioned methods may be applied to fraud detection
or other commercial purposes by visual detection of node related events in the
network streaming.



Acknowledgments

This work was supported by Sibila and Smartgrids research projects (NORTE-
07-0124-FEDER-000056/59), financed by North Portugal Regional Operational
Programme (ON.2 O Novo Norte), under the National Strategic Reference Frame-
work (NSRF), through the Development Fund (ERDF), and by national funds,
through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia
(FCT), and by European Commission through the project MAESTRA (Grant
number ICT-2013-612944). The authors also acknowledge the financial support
given by the project number 18450 through the ”SI I&DT Individual” program
by QREN and delivered to WeDo Business Assurance. Finally the authors ac-
knowledge the reviewers for their constructive reviews on this paper.

References

1. James Abello and Frank van Ham. Matrix zoom: A visual interface to semi-external
graphs. In Proceedings of the IEEE Symposium on Information Visualization, IN-
FOVIS ’04, pages 183–190, Washington, DC, USA, 2004. IEEE Computer Society.

2. Albert-László Barabási. The origin of bursts and heavy tails in human dynamics.
Nature, (435):207–211, 2005.

3. Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In Proceedings of the 29th International Colloquium on Automata,
Languages and Programming, ICALP ’02, pages 693–703, London, UK, UK, 2002.
Springer-Verlag.

4. Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distribu-
tions in empirical data. SIAM Review, 51(4):661–703, 2009.

5. Graham Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking
most frequent items dynamically. 2003.

6. Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Frequency estimation
of internet packet streams with limited space. In Algorithms-ESA 2002, pages
348–360. Springer, 2002.

7. Niklas Elmqvist, Thanh-Nghi Do, Howard Goodell, Nathalie Henry, and Jean-
Daniel Fekete. ZAME: Interactive Large-Scale Graph Visualization. In IEEE
Press, editor, IEEE Pacific Visualization Symposium 2008, pages 215–222, Kyoto,
Japon, 2008. IEEE.

8. Joao Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC, 1st
edition, 2010.

9. Colin S Gillespie. Fitting heavy tailed distributions: the poweRlaw package, 2014.
R package version 0.20.5.

10. Frank Ham, Hans-Jörg Schulz, and Joan M. Dimicco. Honeycomb: Visual analysis
of large scale social networks. In Proceedings of the 12th IFIP TC 13 International
Conference on Human-Computer Interaction: Part II, INTERACT ’09, pages 429–
442, Berlin, Heidelberg, 2009. Springer-Verlag.

11. Robert A. Hanneman and Mark Riddle. Introduction to Social Network Methods.
University of California, Riverside, Riverside, CA, USA, 2005.

12. Nathalie Henry and Jean daniel Fekete. Matrixexplorer: a dual-representation sys-
tem to explore social networks. IEEE Transactions on Visualization and Computer
Graphics, 12:677–684, 2006.



13. Joyent Inc. Node js, 2013. [Online; accessed October-2013].
14. A. Jacomy. Sigma js, 2013. [Online; accessed October-2013].
15. M. Jacomy. Forceatlas2, the new version of our home-brew layout., 2013. [Online;

accessed 21-Dec-2013].
16. Bongshin Lee, Catherine Plaisant, Cynthia Sims Parr, Jean-Daniel Fekete, and

Nathalie Henry. Task taxonomy for graph visualization. In Proceedings of the
2006 AVI Workshop on BEyond Time and Errors: Novel Evaluation Methods for
Information Visualization, BELIV ’06, pages 1–5, New York, NY, USA, 2006.
ACM.

17. T. Venturini M. Jacomy, S. Heymann and M. Bastian. Forceatlas2, a graph layout
algorithm for handy network visualization, 2011. [Online; accessed 29-Dec-2013].

18. G. S. Manku and R. Motwani. Approximate frequency counts over data streams.
In Proceedings of the 28th International Conference on Very Large Data Bases,
2002.

19. Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computa-
tion of frequent and top-k elements in data streams. In Proceedings of the 10th
International Conference on Database Theory, ICDT’05, pages 398–412, Berlin,
Heidelberg, 2005. Springer-Verlag.

20. Lei Shi, Nan Cao, Shixia Liu, Weihong Qian, Li Tan, Guodong Wang, Jimeng Sun,
and Ching-Yung Lin. Himap: Adaptive visualization of large-scale online social
networks. In Peter Eades, Thomas Ertl, and Han-Wei Shen, editors, PacificVis,
pages 41–48. IEEE Computer Society, 2009.


