Skip to main content

Spatial and Geographically Weighted Regression

  • Reference work entry
  • First Online:
Encyclopedia of GIS
FormalPara Synonyms

Conditional spatial regression; Global and local spatial modeling; Moving average regression; Regression; Simultaneous autoregression; Spatial prediction

Definition

Spatial regression (SR) is a global spatial modeling technique in which spatial autocorrelation among the regression parameters are taken into account. SR is usually performed for spatial data obtained from spatial zones or areas. The basic aim in SR modeling is to establish the relationship between a dependent variable measured over a spatial zone and other attributes of the spatial zone, for a given study area, where the spatial zones are the subset of the study area. While SR is known to be a modeling method in spatial data analysis literature (Bailey and Gatrell 1995; Haining 1993; Schabengerger and Gotway 2005; Haining 2003; Fotheringham et al. 2000; Anselin 1988), in spatial data-mining literature it is considered to be a classification technique (Shekhar and Chawla 2003).

Geographically weighted...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Bailey T, Gatrell AC (1995) Interactive spatial data analysis. Pearson, Harlow

    Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton M (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28:281–98

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography perspectives on spatial data analysis. Sage, London

    MATH  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weigthed regression the analysis of spatially varying relationships. Wiley, West Sussex

    MATH  Google Scholar 

  • Gamerman D, Moreira ARB (2004) Multivariate spatial regression models. J Multivar Anal 91:262–281

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith DA (1995) Some guidelines for specifying the geographic weights matrix contained in spatial statistical models. In: Arlinghous SL, Griffith AD, Drake, WD, Nystuen JD (eds) Practical handbook of spatial statistics. CRC, Boca Raton, pp 65–82

    Google Scholar 

  • Haining R (1993) Spatial data analysis in the social and environmental sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Haining RP (2003) Spatial data analysis theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schabengerger O, Gotway CA (2005) Statistical methods for spatial data analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Shekhar S, Chawla S (2003) Spatial databases: a tour. Pearson, New Jersey

    Google Scholar 

Recommended Reading

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Düzgün, H.S., Kemeç, S. (2017). Spatial and Geographically Weighted Regression. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1242

Download citation

Publish with us

Policies and ethics