Skip to main content

Optimal Worst-Case Matching

  • Reference work entry
  • First Online:
Encyclopedia of GIS

Definition

Let P be a set of service providers and O be a set of customers. Each service-provider p (customer o) has a service capacity (demand), denoted by p. w (o. w). The Euclidean distance between o and p is denoted by d(o, p). The SPatialMatching forMinimizingMaximum matching distance (SPM-MM) problem (Long et al. 2013) is to generate an assignment A denoting a set containing the elements in the form of triplets (o, p, w), where (o, p, w) is called a match between o and p and denotes that p provides the service with the amount of w to o such that the following three conditions hold.

  1. (1)

    Capacity Constraint: no service provider provides its service of the amount greater than its capacity, i.e., \(\forall p \in P\), ∑(o, p, w) ∈ A w ≤ p. w;

  2. (2)

    Demand Constraint: each customer’s service demand is satisfied, i.e., \(\forall o \in O\), ∑(o, p, w) ∈ Aw = o. w; and

  3. (3)

    Optimality Constraint: the maximum matching distance (mmd) of A is minimized, i.e., max{d(o, p) | (o, p, w) ∈ A}, is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham D, Cechlarova K, Manlove D, Mehlhorn K (2004) Pareto optimality in house allocation problems. Lect Notes Comput Sci 3341:3–15

    Article  MathSciNet  MATH  Google Scholar 

  • Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Bortnikov E, Khuller S, Li J, Mansour Y, Naor JS (2010) The load-distance balancing problem. Networks 59(1):22–29

    Article  MathSciNet  MATH  Google Scholar 

  • Burkard RE, Dell’Amico M, Martello S (2009) Assignment problems. Society for Industrial Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Chang MS, Tang CY, Lee RCT (1992) Solving the euclidean bottleneck matching problem by k-relative neighborhood graphs. Algorithmica 8(1):177–194

    Article  MathSciNet  MATH  Google Scholar 

  • Chazelle B (1986) New upper bounds for neighbor searching. Inf Control 68(1–3):105–124

    Article  MathSciNet  MATH  Google Scholar 

  • Dokka T, Kouvela A, Spieksma FCR (2012) Approximating the multi-level bottleneck assignment problem. Oper Res Lett 40(4):282–286

    Article  MathSciNet  MATH  Google Scholar 

  • Efrat A, Katz MJ (2000) Computing Euclidean bottleneck matchings in higher dimensions. Inf Process Lett 75(4):169–174

    Article  MathSciNet  MATH  Google Scholar 

  • Efrat A, Itai A, Katz MJ (2001) Geometry helps in bottleneck matching and related problems. Algorithmica 31(1):1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Gabow HN, Tarjan RE (1988) Algorithms for two bottleneck optimization problems. J Algorithms 9(3): 411–417

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg AV, Hed S, Kaplan H, Tarjan RE, Werneck RFF (2011) Maximum flows by incremental breadth-first search. In: ESA, Saarbrücken, vol 6942, pp 457–468

    Google Scholar 

  • Gross O (1959) The bottleneck assignment problem. The Rand Corporation, Santa Monica

    Google Scholar 

  • Hochbaum DS, Shmoys DB (1985) A best possible heuristic for the k-center problem. Math Oper Res 10(2):180–184

    Article  MathSciNet  MATH  Google Scholar 

  • Hopcroft JE, Karp RM (1973) An n5∕2 algorithm for maximum matchings in bipartite graphs. SIAM J Comput 2(4):225–231

    Article  MathSciNet  MATH  Google Scholar 

  • Irving RW, Kavitha T, Mehlhorn K, Michail D, Paluch K (2004) Rank-maximal matchings. In: Proceedings of the fifteenth annual ACM-SIAM symposium on discrete algorithms, New Orleans. Society for Industrial and Applied Mathematics, pp 68–75

    Google Scholar 

  • Long C, Wong RCW, Yu PS, Jiang M (2013) On optimal worst-case matching. In: Proceedings of the 2013 international conference on Management of data, New York. ACM, pp 845–856

    Google Scholar 

  • Mehlhorn K (2009) Assigning papers to referees. Automata, Languages and Programming. Springer Berlin/Heidelberg, 2009. 1–2

    Google Scholar 

  • U LH, Yiu ML, Mouratidis K, Mamoulis N (2008) Capacity constrained assignment in spatial databases. In: Proceedings of the 2013 international conference on Management of data, Vancouver. ACM, pp 15–28

    Google Scholar 

  • U LH, Mouratidis K, Mamoulis N (2010) Continuous spatial assignment of moving users. VLDB J 19(2): 141–160

    Google Scholar 

  • Wong RCW, Tao Y, Fu AWC, Xiao X (2007) On efficient spatial matching. In: Proceedings of the 33rd international conference on very large data bases, Vienna, pp 579–590

    Google Scholar 

  • Wong RCW, Özsu MT, Yu PS, Fu AWC, Liu L (2009) Efficient method for maximizing bichromatic reverse nearest neighbor. Proc VLDB Endow 2(1):1126–1137

    Article  Google Scholar 

  • Ye HQ, Yao DD (2010) Utility-maximizing resource control: diffusion limit and asymptotic optimality for a two-bottleneck model. Oper Res 58:613–623

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RaymondChi-Wing Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Long, C., Wong, RW. (2017). Optimal Worst-Case Matching. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1516

Download citation

Publish with us

Policies and ethics