Definition
Spatial interaction refers to all cases in which a relationship (a flow of persons, goods, communications, citations, and so on) is observed between pairs of spatial units. Differently from the standard areal or point units often analyzed in spatial science, spatial interaction data are denoted by their bilateral nature. They have an origin and a destination (in the particular case, the two being the same). Such origins and destinations may have observable characteristics. Moreover, each pair of spatial units may be described according to some measures of separation (such as distance) or of commonality (e.g., the presence of a common language). Such descriptors are typically employed in spatial interaction models, the most commonly used analytical framework for modeling flow data. Problems occur when the aforementioned descriptors exhibit correlation between the values of different spatial units or dyads which is due to the spatial configuration of the units themselves...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Andersson M, Gråsjö U (2009) Spatial dependence and the representation of space in empirical models. Ann Reg Sci 43(1):159–180
Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic, Dordrecht/Boston
Arbia G (2006) Spatial econometrics: statistical foundations and applications to regional convergence. Springer, Heidelberg
Arbia G (2014) A primer for spatial econometrics: with applications in R. Palgrave Macmillan, New York
Arbia G, Petrarca F (2013) Effects of scale in spatial interaction models. J Geogr Syst 15(3):249–264
Bavaud F (2013) Testing spatial autocorrelation in weighted networks: the modes permutation test. J Geogr Syst 15(3):233–247
Beenstock M, Felsenstein D (2016, forthcoming) Double spatial dependence in gravity models: migration from the European neighborhood to the European union. In: Patuelli R, Arbia G (eds) Spatial econometric interaction modelling. Springer, Heidelberg/Berlin
Behrens K, Ertur C, Koch W (2012) ‘Dual’ gravity: using spatial econometrics to control for multilateral resistance. J Appl Econ 25(2):773–794
Berglund S, Karlström A (1999) Identifying local spatial association in flow data. J Geogr Syst 1(3):219–236
Black WR (1992) Network autocorrelation in transport network and flow systems. Geogr Anal 24(3):207–222
Black WR, Thomas I (1998) Accidents on Belgium’s motorways: a network autocorrelation analysis. J Transp Geogr 6(3):23–31
Bolduc D, Laferrière R, Santarossa G (1992) Spatial autoregressive error components in travel flow models. Reg Sci Urban Econ 22(3):371–385
Burger M, van Oort F, Linders G-J (2009) On the specification of the gravity model of trade: zeros, excess zeros and zero-inflated estimation. Spat Econ Anal 4(3): 167–190
Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344
Cliff AD, Martin RL, Ord JK (1974) Evaluating the friction of distance parameter in gravity models. Reg Stud 8(3–4):281–286
Cliff AD, Martin RL, Ord JK (1976) A reply to the final comment. Reg Stud 10(3):341–342
Congdon P (2010) Random-effects models for migration attractivity and retentivity: a Bayesian methodology. J R Stat Soc Ser A (Stat Soc) 173(4):755–774
Cressie NAC (1993) Statistics for spatial data. Wiley, New York
Curry L (1972) A spatial analysis of gravity flows. Reg Stud 6(2):131–147
Curry L, Griffith DA, Sheppard ES (1975) Those gravity parameters again. Reg Stud 9(3):289–96
Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in the European union. J Reg Sci 48(5):969–989
Fischer MM, Reismann M, Scherngell T (2010) Spatial interaction and spatial autocorrelation. In: Anselin L, Rey SJ (eds) Perspectives on spatial data analysis. Advances in spatial science. Springer, Berlin/Heidelberg, pp 61–79
Fotheringham AS, Webber MJ (1980) Spatial structure and the parameters of spatial interaction models. Geogr Anal 12(1):33–46
Getis A (1991) Spatial interaction and spatial autocorrelation: a cross-product approach. Environ Plan A 23(9):1269–1277
Griffith DA (2000) A linear regression solution to the spatial autocorrelation problem. J Geogr Syst 2(2): 141–156
Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer, Berlin/Heidelberg/New York
Griffith DA (2006) Assessing spatial dependence in count data: winsorized and spatial filter specification alternatives to the auto-Poisson model. Geogr Anal 38(2):160–179
Griffith DA (2007) Spatial structure and spatial interaction: 25 years later. Rev Reg Stud 37(1):28–38
Griffith DA (2010) The Moran coefficient for non-normal data. J Stat Plan Inference 140(11):2980–2990
Griffith DA (2011) Visualizing analytical spatial autocorrelation components latent in spatial interaction data: an eigenvector spatial filter approach. Comput Environ Urban Syst 35(2):140–149
Griffith DA, Chun Y (2015) Spatial autocorrelation in spatial interactions models: geographic scale and resolution implications for network resilience and vulnerability. Netw Spat Econ 15(2):337–365
Griffith DA, Fischer MM (2016, forthcoming) Constrained variants of the gravity model and spatial dependence: model specification and estimation issues. In: Patuelli R, Arbia G (eds) Spatial econometric interaction modelling. Springer, Heidelberg/Berlin
Griffith DA, Jones KG (1980) Explorations into the relationship between spatial structure and spatial interaction. Environ Plan A 12(2):187–201
Haynes KE, Fotheringham AS (1984) Gravity and spatial interaction models. Sage Publications, Beverly Hills
Jacqmin-Gadda H, Commenges D, Nejjari C, Dartigues J-F (1997) Tests of geographical correlation with adjustment for explanatory variables: an application to dyspnoea in the elderly. Stat Med 16(11):1283–1297
Krisztin T, Fischer MM (2015, forthcoming) The gravity model for international trade: specification and estimation issues. Spat Econ Anal 10(4):451–470
Lambert DM, Brown JP, Florax RJGM (2010) A two-step estimator for a spatial lag model of counts: theory, small sample performance and an application. Reg Sci Urban Econ 40(4):241–252
LeSage JP, Fischer MM (2010) Spatial econometric methods for modeling origin-destination flows. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin/Heidelberg, pp 409–433
LeSage JP, Fischer MM (2016, forthcoming) Spatial regression-based model specifications for exogenous and endogenous spatial interaction. In: Patuelli R, Arbia G (eds) Spatial econometric interaction modelling. Springer, Heidelberg/Berlin
LeSage JP, Fischer MM, Scherngell T (2007) Knowledge spillovers across Europe: evidence from a Poisson spatial interaction model with spatial effects. Pap Reg Sci 86(3):393–421
LeSage JP, Pace RK (2008) Spatial econometric modeling of origin-destination flows. J Reg Sci 48(5):941–967
LeSage JP, Pace RK (2009) Introduction to spatial econometrics. CRC Press, Boca Raton
LeSage JP, Satici E (2016, forthcoming) A Bayesian spatial interaction model variant of the Poisson pseudo-maximum likelihood estimator. In: Patuelli R, Arbia G (eds) Spatial econometric interaction modelling. Springer, Heidelberg/Berlin
LeSage JP, Thomas-Agnan C (2015) Interpreting spatial econometric origin-destination flows models. J Reg Sci 55(2):188–208
Lin G, Zhang T (2007) Loglinear residual tests of Moran’s I autocorrelation and their applications to Kentucky breast cancer data. Geogr Anal 39(3):293–310
Metulini R, Patuelli R, Griffith DA (2015) Estimating a spatial filtering gravity model for bilateral trade: functional specifications and estimation challenges. In: Paper presented at the European trade study group 2015, Paris
Moran P (1948) The interpretation of statistical maps. J R Stat Soc B 10:243–251
Neumayer E, Plümper T (2010) Spatial effects in dyadic data. Int Organ 64(1):145–166
Peeters D, Thomas I (2009) Network autocorrelation. Geogr Anal 41(4):436–443
Polasek W, Llano C, Sellner R (2012) Bayesian methods for completing data in spatial models. Rev Econ Anal 2(2):192–214
Porojan A (2001) Trade flows and spatial effects: the gravity model revisited. Open Econ Rev 12(3):265–280
Roy JR, Thill J-C (2003) Spatial interaction modelling. Pap Reg Sci 83(1):339–361
Santos Silva JMC, Tenreyro S (2006) The log of gravity. Rev Econ Stat 88(4):641–658
Sellner R, Fischer MM, Koch M (2013) A spatial autoregressive Poisson gravity model. Geogr Anal 45(2):180–201
Sen A, Smith TE (1995) Gravity models of spatial interaction behavior. Advances in spatial and network economics series. Springer, Heidelberg/New York
Sheppard ES, Griffith DA, Curry L (1976) A final comment on mis-specification and autocorrelation in those gravity parameters. Reg Stud 10(3):337–339
Thomas-Agnan C, LeSage JP (2014) Spatial econometric OD-flow models. In: Fischer MM, Nijkamp P (eds) Handbook of regional science. Springer, Berlin/Heidelberg, pp 1653–1673
Tiefelsdorf M (2003) Misspecifications in interaction model distance decay relations: a spatial structure effect. J Geogr Syst 5(1):25–50
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this entry
Cite this entry
Patuelli, R. (2017). Spatial Autocorrelation and Spatial Interaction. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1522
Download citation
DOI: https://doi.org/10.1007/978-3-319-17885-1_1522
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17884-4
Online ISBN: 978-3-319-17885-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering