Synonyms
Definition
Spatial statistical visualization refers to a process of graphical representation to explore the characteristics of georeferenced data in space. It typically involves conventional mapping because georeferenced data intrinsically include locational information. But other forms of graphical representations, such as the scatterplot, also are frequently utilized. The purpose of spatial statistical visualization is to investigate an underlying spatial pattern in georeferenced data and subsequently to suggest an analytic method that properly reflects an identified spatial pattern in statistical modeling of these data. It also is used as a diagnostic tool to evaluate the performance of spatial statistical modeling results.
Historical Background
Widespread statistical analysis of georeferenced data emerged with the quantitative revolution in geography during the 1950s and 1960s. Researchers in this new area contributed to the development of...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant SI, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577–1600
Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115
Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22
Arrouays D, McKenzie N, Hempel J, de Forges AR, McBratney AB (eds) (2014) GlobalSoilMap: basis of the global spatial soil information system. CRC Press, London
Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman Scientific & Technical, Essex
Bao S, Anselin L, Martin D, Stralberg D (2000) Seamless integration of spatial statistics and GIS: the S-plus for ArcView and the S+ grassland links. J Geogr Syst 2(3):287–306
Berman M, Diggle P (1989) Estimating weighted integrals of the second-order intensity of a spatial point process. J R Stat Soc Ser B (Methodol) 51(1):81–92
Bivand R (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38(1):23–40
Carr DB, Pickle LW (2010) Visualizing data patterns with micromaps. CRC Press, Boca Raton
Carr DB, Wallin JF, Carr DA (2000) Two new templates for epidemiology applications: linked micromap plots and conditioned choropleth maps. Stat Med 19(17–18):2521–2538
Cressie N (1984) Towards resistant geostatistics. In: Verly G, David M, Journel AG, Marechal A (eds) Geostatistics for natural resources characterization. Part 1. D. Reidel Publishing Co., Hingham
Cressie N (1993) Statistics for spatial data. Wiley, New York
Devesa SS (1999) Atlas of cancer mortality in the United States, 1950–1994 (No. 99). Diane Pub Co., Collingdale
Diggle PJ (1983) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London
Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206
Goodchild M, Haining R, Wise S (1992) Integrating GIS and spatial data analysis: problems and possibilities. Int J Geogr Inf Syst 6(5):407–423
Haining R, Wise S, Ma J (1998) Exploratory spatial data analysis. J R Stat Soc Ser D (Stat) 47(3):457–469
King LJ (1969) Statistical analysis in geography. Prentice-Hall, Englewood Cliffs
Lawson A, Biggeri A, Böhning D, Lesaffre E, Viel JF, Bertollini R (1999) Disease mapping and risk assessment for public health. Wiley, New York
MacEachren AM, Kraak MJ (1997) Exploratory cartographic visualization: advancing the agenda. Comput Geosci 23(4):335–343
MacEachren AM, Buttenfield BP, Campbell JB, DiBiase DW, Monmonier M (1992) Visualization. In: Abler R, Marcus MG, Olson JM (eds) Geography’s inner worlds: pervasive themes in contemporary American geography. Springer science & business. Rutgers University Press, New Brunswick, pp 101–137
McCormick BH, DeFanti TA, Brown MD (1987) Visualization in scientific computing. IEEE Comput Graph Appl 7(10):69–69
Monmonier M (1989) Geographic brushing: enhancing exploratory analysis of the scatterplot matrix. Geogr Anal 21(1):81–84
Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4):286–306
Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Prob 13:255–266
Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London
Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualisation. Prentice Hall, Upper Saddle River
Takatsuka M, Gahegan M (2002) GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization. Comput Geosci 28(10):1131–1144
Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240
Tsou MH, Leitner M (2013) Visualization of social media: seeing a mirage or a message? Cartogr Geogr Inf Sci 40(2):55–60
Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading
Wang S, Anselin L, Bhaduri B, Crosby C, Goodchild MF, Liu Y, Nyerges TL (2013) CyberGIS software: a synthetic review and integration roadmap. Int J Geogr Inf Sci 27(11):2122–2145
Zhang Z, Griffith DA (2000) Integrating GIS components and spatial statistical analysis in DBMSs. Int J Geogr Inf Sci 14(6):543–566
Recommended Reading
Spence R, Press A (2000) Information visualization. Addison-Wesley, New York
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this entry
Cite this entry
Chun, Y. (2017). Spatial Statistical Visualization. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1525
Download citation
DOI: https://doi.org/10.1007/978-3-319-17885-1_1525
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17884-4
Online ISBN: 978-3-319-17885-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering