Skip to main content

Spatial Statistical Visualization

  • Reference work entry
  • First Online:
Encyclopedia of GIS
  • 390 Accesses

Synonyms

Exploratory Spatial Data Analysis

Definition

Spatial statistical visualization refers to a process of graphical representation to explore the characteristics of georeferenced data in space. It typically involves conventional mapping because georeferenced data intrinsically include locational information. But other forms of graphical representations, such as the scatterplot, also are frequently utilized. The purpose of spatial statistical visualization is to investigate an underlying spatial pattern in georeferenced data and subsequently to suggest an analytic method that properly reflects an identified spatial pattern in statistical modeling of these data. It also is used as a diagnostic tool to evaluate the performance of spatial statistical modeling results.

Historical Background

Widespread statistical analysis of georeferenced data emerged with the quantitative revolution in geography during the 1950s and 1960s. Researchers in this new area contributed to the development of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant SI, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577–1600

    Article  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22

    Article  Google Scholar 

  • Arrouays D, McKenzie N, Hempel J, de Forges AR, McBratney AB (eds) (2014) GlobalSoilMap: basis of the global spatial soil information system. CRC Press, London

    Google Scholar 

  • Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman Scientific & Technical, Essex

    Google Scholar 

  • Bao S, Anselin L, Martin D, Stralberg D (2000) Seamless integration of spatial statistics and GIS: the S-plus for ArcView and the S+ grassland links. J Geogr Syst 2(3):287–306

    Article  Google Scholar 

  • Berman M, Diggle P (1989) Estimating weighted integrals of the second-order intensity of a spatial point process. J R Stat Soc Ser B (Methodol) 51(1):81–92

    MathSciNet  MATH  Google Scholar 

  • Bivand R (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38(1):23–40

    Article  Google Scholar 

  • Carr DB, Pickle LW (2010) Visualizing data patterns with micromaps. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Carr DB, Wallin JF, Carr DA (2000) Two new templates for epidemiology applications: linked micromap plots and conditioned choropleth maps. Stat Med 19(17–18):2521–2538

    Article  Google Scholar 

  • Cressie N (1984) Towards resistant geostatistics. In: Verly G, David M, Journel AG, Marechal A (eds) Geostatistics for natural resources characterization. Part 1. D. Reidel Publishing Co., Hingham

    Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    MATH  Google Scholar 

  • Devesa SS (1999) Atlas of cancer mortality in the United States, 1950–1994 (No. 99). Diane Pub Co., Collingdale

    Google Scholar 

  • Diggle PJ (1983) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London

    MATH  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • Goodchild M, Haining R, Wise S (1992) Integrating GIS and spatial data analysis: problems and possibilities. Int J Geogr Inf Syst 6(5):407–423

    Article  Google Scholar 

  • Haining R, Wise S, Ma J (1998) Exploratory spatial data analysis. J R Stat Soc Ser D (Stat) 47(3):457–469

    Article  Google Scholar 

  • King LJ (1969) Statistical analysis in geography. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Lawson A, Biggeri A, Böhning D, Lesaffre E, Viel JF, Bertollini R (1999) Disease mapping and risk assessment for public health. Wiley, New York

    MATH  Google Scholar 

  • MacEachren AM, Kraak MJ (1997) Exploratory cartographic visualization: advancing the agenda. Comput Geosci 23(4):335–343

    Article  Google Scholar 

  • MacEachren AM, Buttenfield BP, Campbell JB, DiBiase DW, Monmonier M (1992) Visualization. In: Abler R, Marcus MG, Olson JM (eds) Geography’s inner worlds: pervasive themes in contemporary American geography. Springer science & business. Rutgers University Press, New Brunswick, pp 101–137

    Google Scholar 

  • McCormick BH, DeFanti TA, Brown MD (1987) Visualization in scientific computing. IEEE Comput Graph Appl 7(10):69–69

    Article  Google Scholar 

  • Monmonier M (1989) Geographic brushing: enhancing exploratory analysis of the scatterplot matrix. Geogr Anal 21(1):81–84

    Article  Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4):286–306

    Article  Google Scholar 

  • Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Prob 13:255–266

    Article  MathSciNet  MATH  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualisation. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Takatsuka M, Gahegan M (2002) GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization. Comput Geosci 28(10):1131–1144

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Tsou MH, Leitner M (2013) Visualization of social media: seeing a mirage or a message? Cartogr Geogr Inf Sci 40(2):55–60

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Wang S, Anselin L, Bhaduri B, Crosby C, Goodchild MF, Liu Y, Nyerges TL (2013) CyberGIS software: a synthetic review and integration roadmap. Int J Geogr Inf Sci 27(11):2122–2145

    Article  Google Scholar 

  • Zhang Z, Griffith DA (2000) Integrating GIS components and spatial statistical analysis in DBMSs. Int J Geogr Inf Sci 14(6):543–566

    Article  Google Scholar 

Recommended Reading

  • Spence R, Press A (2000) Information visualization. Addison-Wesley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwan Chun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Chun, Y. (2017). Spatial Statistical Visualization. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1525

Download citation

Publish with us

Policies and ethics