Skip to main content

Irregular Shaped Spatial Clusters: Detection and Inference

  • Reference work entry
  • First Online:
Encyclopedia of GIS

Historical Background

The detection and inference of spatial clusters is a fundamental tool of geographical surveillance of phenomena like disease, crime, and environmental events (Lawson et al. 1999). Loosely speaking, a spatial cluster is a special location within a study area which contains more events than expected by pure chance. When the cluster is found to be significant, researchers may gather evidence to justify some plausible mechanisms of the studied events’ occurrence. On the other hand, when the spatial cluster is weak (i.e., nonsignificant), there is evidence that the studied phenomenon does not depend on its geographical location.

The most popular measure of the strength of a cluster is the spatial scan statistic (Kulldorff 1997). The circular scan, a particular case of the spatial scan statistic, is the most used method for the detection and inference of disease clusters. However, many spatial clusters do not have regular shape (e.g., noncircular- or non-square-shaped...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assunção R, Costa M, Tavares A, Ferreira S (2006) Fast detection of arbitrary shaped disease clusters. Stat Med 25(5):723–742. doi:10.1002/sim.2411

    Article  MathSciNet  Google Scholar 

  • Besag J, Newell J (1991) The detection of clusters in rare diseases. J R Stat Soc Ser A (Stat Soc) 154(1):143–155. http://www.jstor.org/stable/2982708

  • Bhatt V, Tiwari N (2014) A spatial scan statistic for survival data based on weibull distribution. Stat Med 33(11):1867–1876. doi:10.1002/sim.6075, http://dx.doi.org/10.1002/sim.6075

  • Cançado A, Duarte A, Duczmal L, Ferreira S, Fonseca C, Gontijo E (2010) Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters. Int J Health Geogr 9(1):55. doi:10.1186/1476-072X-9-55, http://www.ij-healthgeographics.com/content/9/1/55

  • Cançado A, da Silva C, Silva M (2014) A spatial scan statistic for zero-inflated Poisson process. Environ Ecol Stat 21(4):627–650. doi:10.1007/s10651-013-0272-1, http://dx.doi.org/10.1007/s10651-013-0272-1

  • Conley J, Gahegan M, Macgill J (2005) A genetic approach to detecting clusters in point data sets. Geogr Anal 37(3):286–314. doi:10.1111/j.1538-4632.2005.00617.x, http://dx.doi.org/10.1111/j.1538-4632.2005.00617.x

  • Costa M, Kulldorff M (2014) Maximum linkage space-time permutation scan statistics for disease outbreak detection. Int J Health Geogr 13(1):20. doi:10.1186/1476-072X-13-20, http://www.ij-healthgeographics.com/content/13/1/20

  • Costa M, Assunção R, Kulldorff M (2012) Constrained spanning tree algorithms for irregularly-shaped spatial clustering. Comput Stat Data Anal 56(6):1771–1783. doi:10.1016/j.csda.2011.11.001

    Article  MathSciNet  Google Scholar 

  • Dematteï C, Molinari N, Daurès J (2007) Arbitrarily shaped multiple spatial cluster detection for case event data. Comput Stat Data Anal 51(8):3931–3945. doi:http://dx.doi.org/10.1016/j.csda.2006.03.011, http://www.sciencedirect.com/science/article/pii/S016794730600082X

  • Duarte A, Duczmal L, Ferreira S, Cançado A (2010) Internal cohesion and geometric shape of spatial clusters. Environ Ecol Stat 17(2):203–229. Cited By (since 1996)0

    Google Scholar 

  • Duczmal L, Assunção R (2004) A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Comput Stat Data Anal 45:269–286. doi:10.1016/S0167-9473(02)00302-X

    Article  MathSciNet  MATH  Google Scholar 

  • Duczmal L, Buckeridge D (2006) A workflow spatial scan statistic. Stat Med 25(5):743–754. doi:10.1002/sim.2403, http://dx.doi.org/10.1002/sim.2403

  • Duczmal L, Kulldorff M, Huang L (2006) Evaluation of spatial scan statistics for irregularly shaped clusters. J Comput Graph Stat 15:428–442. doi:10.1198/106186006X112396

    Article  MathSciNet  Google Scholar 

  • Duczmal L, Cançado A, Takahashi R, Bessegato L (2007) A genetic algorithm for irregularly shaped spatial scan statistics. Comput Stat Data Anal 52(1):43–52. doi:http://dx.doi.org/10.1016/j.csda.2007.01.016, http://www.sciencedirect.com/science/article/pii/S0167947307000199

  • Duczmal L, Cançado A, Takahashi R (2008) Delineation of irregularly shaped disease clusters through multiobjective optimization. J Comput Graph Stat 17(1):243–262. http://www.jstor.org/stable/27594301

  • Duczmal L, Duarte A, Tavares R (2009) Extensions of the scan statistic for the detection and inference of spatial clusters. In: Balakrishnan N, Glaz J (eds) Scan statistics. Birkhäuser, Boston, pp 157–182

    Google Scholar 

  • Duczmal L, Tavares R, Patil G, Cançado A (2010) Testing spatial cluster occurrence in maps equipped with environmentally defined structures. Environ Ecol Stat 17(2):183–202. doi:10.1007/s10651-010-0141-0, http://dx.doi.org/10.1007/s10651-010-0141-0

  • Duczmal L, Moreira G, Burgarelli D, Takahashi R, Magalhães F, Bodevan E (2011) Voronoi distance based prospective space-time scans for point data sets: a dengue fever cluster analysis in a Southeast Brazilian town. Int J Health Geogr 10(1):29. doi:10.1186/1476-072X-10-29, http://www.ij-healthgeographics.com/content/10/1/29

  • Fotheringham A, Zhan F (1996) A comparison of three exploratory methods for cluster detection in spatial point patterns. Geogr Anal 28(3):200–218. doi:10.1111/j.1538-4632.1996.tb00931.x, http://dx.doi.org/10.1111/j.1538-4632.1996.tb00931.x

  • Huang L, Kulldorff M, Gregorio D (2007) A spatial scan statistic for survival data. Biometrics 63(1):109–118. doi:10.1111/j.1541-0420.2006.00661.x, http://dx.doi.org/10.1111/j.1541-0420.2006.00661.x

  • Izakian H, Pedrycz W (2012) A new PSO-optimized geometry of spatial and spatio-temporal scan statistics for disease outbreak detection. Swarm Evol Comput 4(0):1–11. doi:http://dx.doi.org/10.1016/j.swevo.2012.02.001, http://www.sciencedirect.com/science/article/pii/S2210650212000120

  • Jung I, Kulldorff M, Richard O (2010) A spatial scan statistic for multinomial data. Stat Med 29:1910–1918. doi:10.1002/sim.3951

    Article  MathSciNet  Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496. doi:10.1080/03610929708831995, http://dx.doi.org/10.1080/03610929708831995

  • Kulldorff M, Huang L, Pickle L, Duczmal L (2006) An elliptic spatial scan statistic. Stat Med 25:3929–3943. doi:10.1002/sim.2490

    Article  MathSciNet  Google Scholar 

  • Kulldorff M, Huang L, Konty K (2009) A scan statistic for continuous data based on the normal probability model. Int J Health Geogr 8(1):58. doi:10.1186/1476-072X-8-58, http://www.ij-healthgeographics.com/content/8/1/58

  • Lawson A, Biggeri A, BVohning D, Lesare E, Viel J, Bertollini R (1999) Disease mapping and risk assessment for public health. Wiley, London

    MATH  Google Scholar 

  • Lima M, Duczmal L (2014) Adaptive likelihood ratio approaches for the detection of space–time disease clusters. Comput Stat Data Anal 77:352–370. doi:10.1016/j.csda.2014.03.015

    Article  MathSciNet  Google Scholar 

  • Lima M, Duczmal L, Cardoso J, Pinto L (2015, to appear) Spatial scan statistics for models with overdispersion and inflated zeros. Statistica Sinica. doi:10.5705/ss.2013.220w

    MATH  Google Scholar 

  • Moreira G, Paquete L, Duczmal L, Menotti D, Takahashi R (2015, to appear) Multi-objective dynamic programming for spatial cluster detection. Environ Ecol Stat. doi:10.1007/s10651-014-0302-7

    Google Scholar 

  • Neill D (2011) Fast bayesian scan statistics for multivariate event detection and visualization. Stat Med 30(5):455–469

    Article  MathSciNet  Google Scholar 

  • Neill D (2012) Fast subset scan for spatial pattern detection. J R Stat Soc B 74(2):337–360

    Article  MathSciNet  Google Scholar 

  • Oliveira F, Duczmal L, Cançado A, Tavares R (2011) Nonparametric intensity bounds for the delineation of spatial clusters. Int J Health Geogr 10(1):1. doi:10.1186/1476-072X-10-1, http://www.ij-healthgeographics.com/content/10/1/1

  • Openshaw S, Charlton M, Wymer C, Craft A (1987) A mark 1 geographical analysis machine for the automated analysis of point data sets. Int J Geogr Inf Syst 1(4):335–358. doi:10.1080/02693798708927821, http://dx.doi.org/10.1080/02693798708927821

  • Patil G, Taillie C (2003) Geographic and network surveillance via scan statistics for critical area detection. Stat Sci 14(4):457–465

    Article  MathSciNet  MATH  Google Scholar 

  • Patil G, Taillie C (2004) Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environ Ecol Stat 11(2):183–197

    Article  MathSciNet  Google Scholar 

  • Pei T, Wan Y, Jiang Y, Qu C, Zhou C, Qiao Y (2011) Detecting arbitrarily shaped clusters using ant colony optimization. Int J Geogr Inf Sci 25(10):1575–1595. doi:10.1080/13658816.2010.533674, http://dx.doi.org/10.1080/13658816.2010.533674

  • Tango T, Takahashi K (2005) A flexibly shaped spatial scan statistic for detecting clusters. Int J Health Geogr 4(1):11. doi:10.1186/1476-072X-4-11

    Article  Google Scholar 

  • Wan Y, Pei T, Zhou C, Jiang Y, Qu C, Qiao Y (2012) Acomcd: a multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization. Comput Stat Data Anal 56(2):283–296. doi:http://dx.doi.org/10.1016/j.csda.2011.08.001, http://www.sciencedirect.com/science/article/pii/S0167947311002866

  • Wang T, Yue C (2013) A binary-based approach for detecting irregularly shaped clusters. Int J Health Geogr 12(1):25. doi:10.1186/1476-072X-12-25

    Article  MathSciNet  Google Scholar 

  • Wu X, Grubesic T (2010) Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm. J Geogr Syst 12(4):409–433. doi:10.1007/s10109-010-0107-7, http://dx.doi.org/10.1007/s10109-010-0107-7

  • Yiannakoulias N, Rosychuk R, Hodgson J (2007) Adaptations for finding irregularly shaped disease clusters. Int J Health Geogr 6. Cited By (since 1996)21

    Google Scholar 

  • Yiannakoulias N, Wilson S, Kariuki H, Mwatha J, Ouma J, Muchiri E, Kimani G, Vennervald B, Dunne D (2010) Locating irregularly shaped clusters of infection intensity. Geospat Health 4(2):191–200. Cited By (since 1996)4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz H. Duczmal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Duczmal, L.H., Cançado, A.L.F. (2017). Irregular Shaped Spatial Clusters: Detection and Inference. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1544

Download citation

Publish with us

Policies and ethics