Historical Background
The detection and inference of spatial clusters is a fundamental tool of geographical surveillance of phenomena like disease, crime, and environmental events (Lawson et al. 1999). Loosely speaking, a spatial cluster is a special location within a study area which contains more events than expected by pure chance. When the cluster is found to be significant, researchers may gather evidence to justify some plausible mechanisms of the studied events’ occurrence. On the other hand, when the spatial cluster is weak (i.e., nonsignificant), there is evidence that the studied phenomenon does not depend on its geographical location.
The most popular measure of the strength of a cluster is the spatial scan statistic (Kulldorff 1997). The circular scan, a particular case of the spatial scan statistic, is the most used method for the detection and inference of disease clusters. However, many spatial clusters do not have regular shape (e.g., noncircular- or non-square-shaped...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Assunção R, Costa M, Tavares A, Ferreira S (2006) Fast detection of arbitrary shaped disease clusters. Stat Med 25(5):723–742. doi:10.1002/sim.2411
Besag J, Newell J (1991) The detection of clusters in rare diseases. J R Stat Soc Ser A (Stat Soc) 154(1):143–155. http://www.jstor.org/stable/2982708
Bhatt V, Tiwari N (2014) A spatial scan statistic for survival data based on weibull distribution. Stat Med 33(11):1867–1876. doi:10.1002/sim.6075, http://dx.doi.org/10.1002/sim.6075
Cançado A, Duarte A, Duczmal L, Ferreira S, Fonseca C, Gontijo E (2010) Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters. Int J Health Geogr 9(1):55. doi:10.1186/1476-072X-9-55, http://www.ij-healthgeographics.com/content/9/1/55
Cançado A, da Silva C, Silva M (2014) A spatial scan statistic for zero-inflated Poisson process. Environ Ecol Stat 21(4):627–650. doi:10.1007/s10651-013-0272-1, http://dx.doi.org/10.1007/s10651-013-0272-1
Conley J, Gahegan M, Macgill J (2005) A genetic approach to detecting clusters in point data sets. Geogr Anal 37(3):286–314. doi:10.1111/j.1538-4632.2005.00617.x, http://dx.doi.org/10.1111/j.1538-4632.2005.00617.x
Costa M, Kulldorff M (2014) Maximum linkage space-time permutation scan statistics for disease outbreak detection. Int J Health Geogr 13(1):20. doi:10.1186/1476-072X-13-20, http://www.ij-healthgeographics.com/content/13/1/20
Costa M, Assunção R, Kulldorff M (2012) Constrained spanning tree algorithms for irregularly-shaped spatial clustering. Comput Stat Data Anal 56(6):1771–1783. doi:10.1016/j.csda.2011.11.001
Dematteï C, Molinari N, Daurès J (2007) Arbitrarily shaped multiple spatial cluster detection for case event data. Comput Stat Data Anal 51(8):3931–3945. doi:http://dx.doi.org/10.1016/j.csda.2006.03.011, http://www.sciencedirect.com/science/article/pii/S016794730600082X
Duarte A, Duczmal L, Ferreira S, Cançado A (2010) Internal cohesion and geometric shape of spatial clusters. Environ Ecol Stat 17(2):203–229. Cited By (since 1996)0
Duczmal L, Assunção R (2004) A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Comput Stat Data Anal 45:269–286. doi:10.1016/S0167-9473(02)00302-X
Duczmal L, Buckeridge D (2006) A workflow spatial scan statistic. Stat Med 25(5):743–754. doi:10.1002/sim.2403, http://dx.doi.org/10.1002/sim.2403
Duczmal L, Kulldorff M, Huang L (2006) Evaluation of spatial scan statistics for irregularly shaped clusters. J Comput Graph Stat 15:428–442. doi:10.1198/106186006X112396
Duczmal L, Cançado A, Takahashi R, Bessegato L (2007) A genetic algorithm for irregularly shaped spatial scan statistics. Comput Stat Data Anal 52(1):43–52. doi:http://dx.doi.org/10.1016/j.csda.2007.01.016, http://www.sciencedirect.com/science/article/pii/S0167947307000199
Duczmal L, Cançado A, Takahashi R (2008) Delineation of irregularly shaped disease clusters through multiobjective optimization. J Comput Graph Stat 17(1):243–262. http://www.jstor.org/stable/27594301
Duczmal L, Duarte A, Tavares R (2009) Extensions of the scan statistic for the detection and inference of spatial clusters. In: Balakrishnan N, Glaz J (eds) Scan statistics. Birkhäuser, Boston, pp 157–182
Duczmal L, Tavares R, Patil G, Cançado A (2010) Testing spatial cluster occurrence in maps equipped with environmentally defined structures. Environ Ecol Stat 17(2):183–202. doi:10.1007/s10651-010-0141-0, http://dx.doi.org/10.1007/s10651-010-0141-0
Duczmal L, Moreira G, Burgarelli D, Takahashi R, Magalhães F, Bodevan E (2011) Voronoi distance based prospective space-time scans for point data sets: a dengue fever cluster analysis in a Southeast Brazilian town. Int J Health Geogr 10(1):29. doi:10.1186/1476-072X-10-29, http://www.ij-healthgeographics.com/content/10/1/29
Fotheringham A, Zhan F (1996) A comparison of three exploratory methods for cluster detection in spatial point patterns. Geogr Anal 28(3):200–218. doi:10.1111/j.1538-4632.1996.tb00931.x, http://dx.doi.org/10.1111/j.1538-4632.1996.tb00931.x
Huang L, Kulldorff M, Gregorio D (2007) A spatial scan statistic for survival data. Biometrics 63(1):109–118. doi:10.1111/j.1541-0420.2006.00661.x, http://dx.doi.org/10.1111/j.1541-0420.2006.00661.x
Izakian H, Pedrycz W (2012) A new PSO-optimized geometry of spatial and spatio-temporal scan statistics for disease outbreak detection. Swarm Evol Comput 4(0):1–11. doi:http://dx.doi.org/10.1016/j.swevo.2012.02.001, http://www.sciencedirect.com/science/article/pii/S2210650212000120
Jung I, Kulldorff M, Richard O (2010) A spatial scan statistic for multinomial data. Stat Med 29:1910–1918. doi:10.1002/sim.3951
Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496. doi:10.1080/03610929708831995, http://dx.doi.org/10.1080/03610929708831995
Kulldorff M, Huang L, Pickle L, Duczmal L (2006) An elliptic spatial scan statistic. Stat Med 25:3929–3943. doi:10.1002/sim.2490
Kulldorff M, Huang L, Konty K (2009) A scan statistic for continuous data based on the normal probability model. Int J Health Geogr 8(1):58. doi:10.1186/1476-072X-8-58, http://www.ij-healthgeographics.com/content/8/1/58
Lawson A, Biggeri A, BVohning D, Lesare E, Viel J, Bertollini R (1999) Disease mapping and risk assessment for public health. Wiley, London
Lima M, Duczmal L (2014) Adaptive likelihood ratio approaches for the detection of space–time disease clusters. Comput Stat Data Anal 77:352–370. doi:10.1016/j.csda.2014.03.015
Lima M, Duczmal L, Cardoso J, Pinto L (2015, to appear) Spatial scan statistics for models with overdispersion and inflated zeros. Statistica Sinica. doi:10.5705/ss.2013.220w
Moreira G, Paquete L, Duczmal L, Menotti D, Takahashi R (2015, to appear) Multi-objective dynamic programming for spatial cluster detection. Environ Ecol Stat. doi:10.1007/s10651-014-0302-7
Neill D (2011) Fast bayesian scan statistics for multivariate event detection and visualization. Stat Med 30(5):455–469
Neill D (2012) Fast subset scan for spatial pattern detection. J R Stat Soc B 74(2):337–360
Oliveira F, Duczmal L, Cançado A, Tavares R (2011) Nonparametric intensity bounds for the delineation of spatial clusters. Int J Health Geogr 10(1):1. doi:10.1186/1476-072X-10-1, http://www.ij-healthgeographics.com/content/10/1/1
Openshaw S, Charlton M, Wymer C, Craft A (1987) A mark 1 geographical analysis machine for the automated analysis of point data sets. Int J Geogr Inf Syst 1(4):335–358. doi:10.1080/02693798708927821, http://dx.doi.org/10.1080/02693798708927821
Patil G, Taillie C (2003) Geographic and network surveillance via scan statistics for critical area detection. Stat Sci 14(4):457–465
Patil G, Taillie C (2004) Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environ Ecol Stat 11(2):183–197
Pei T, Wan Y, Jiang Y, Qu C, Zhou C, Qiao Y (2011) Detecting arbitrarily shaped clusters using ant colony optimization. Int J Geogr Inf Sci 25(10):1575–1595. doi:10.1080/13658816.2010.533674, http://dx.doi.org/10.1080/13658816.2010.533674
Tango T, Takahashi K (2005) A flexibly shaped spatial scan statistic for detecting clusters. Int J Health Geogr 4(1):11. doi:10.1186/1476-072X-4-11
Wan Y, Pei T, Zhou C, Jiang Y, Qu C, Qiao Y (2012) Acomcd: a multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization. Comput Stat Data Anal 56(2):283–296. doi:http://dx.doi.org/10.1016/j.csda.2011.08.001, http://www.sciencedirect.com/science/article/pii/S0167947311002866
Wang T, Yue C (2013) A binary-based approach for detecting irregularly shaped clusters. Int J Health Geogr 12(1):25. doi:10.1186/1476-072X-12-25
Wu X, Grubesic T (2010) Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm. J Geogr Syst 12(4):409–433. doi:10.1007/s10109-010-0107-7, http://dx.doi.org/10.1007/s10109-010-0107-7
Yiannakoulias N, Rosychuk R, Hodgson J (2007) Adaptations for finding irregularly shaped disease clusters. Int J Health Geogr 6. Cited By (since 1996)21
Yiannakoulias N, Wilson S, Kariuki H, Mwatha J, Ouma J, Muchiri E, Kimani G, Vennervald B, Dunne D (2010) Locating irregularly shaped clusters of infection intensity. Geospat Health 4(2):191–200. Cited By (since 1996)4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this entry
Cite this entry
Duczmal, L.H., Cançado, A.L.F. (2017). Irregular Shaped Spatial Clusters: Detection and Inference. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1544
Download citation
DOI: https://doi.org/10.1007/978-3-319-17885-1_1544
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17884-4
Online ISBN: 978-3-319-17885-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering