Skip to main content

Object Relational Constraint Databases for GIS

  • Reference work entry
  • First Online:
Encyclopedia of GIS

Description

Constraint databases (CDBs) have been used in geographical information systems as a mechanism to represent the complex objects and information that can participate in this type of application. CDBs are proposed to represent geographical data by means of formulas described by constraints (equations, inequations, or Boolean combinations of both), since classic data types lack the expressiveness required for the representation of the full domain of data. The appearance of the object-relational constraint databases (ORCDB) was an evolution of the definition and implementation of CDBs to optimize query evaluation. ORCDBs enable complex information represented by means of constraints to be stored and queried in object-relational databases. This evolution shields the user from unnecessary details on how the complex information is stored and how the queries are evaluated, thereby enlarging the capacity of expressiveness for any commercial database management system.

ORCDBs permit...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araya I, Trombettoni G, Neveu B (2010) Making adaptive an interval constraint propagation algorithm exploiting monotonicity. In: Proceedings of the 16th international conference on principles and practice of constraint programming (CP’10). Springer-Verlag, Berlin/Heidelberg, pp 61–68

    Google Scholar 

  • Basu S (1996) Algorithms in semi-algebraic geometry. New York University, New York

    Google Scholar 

  • Benhamou F, Granvilliers L (2006) Continuous and interval constraints. In: Rossi F, van Beek P, Walsh T (eds) Handbook of constraint programming. Elsevier, Amsterdam/Boston, pp 571–604

    Chapter  Google Scholar 

  • Brisaboa NR, Luaces MR, Navarro G, Seco D (2013) Space-efficient representations of rectangle datasets supporting orthogonal range querying. Inf Syst 38(5):635–655

    Article  Google Scholar 

  • Brodsky A, Segal VE, Chen J, Exarkhopoulo PA (1999) The CCUBE constraint object-oriented database system. In: Proceedings of ACM SIGMOD international conference on management of data, 1–3 June 1999, Philadelphia, pp 577–579

    Google Scholar 

  • Buchberger B (1985) Gröbner bases: an algorithmic method in polynomial ideal theory. In: Bose NK (ed) Multidimensional systems theory. Reidel Publishing Company, Dodrecht/Boston/Lancaster, pp 184–232

    Chapter  Google Scholar 

  • Dechter R (2003) Constraint processing. Morgan Kaufmann, San Francisco. ISBN:1558608907

    MATH  Google Scholar 

  • Goldin D, Kutlu A, Song M (2003) Extending the constraint database framework. In: PCK50. ACM Press, New York, pp 42–54

    Google Scholar 

  • Gómez-López MT, Gasca RM (2014) Using constraint programming in selection operators for constraint databases. Expert Syst Appl 41(15):6773–6785

    Article  Google Scholar 

  • Gómez-López MT, Ceballos R, Gasca RM, Valle CD (2009) Developing a labelled object-relational constraint database architecture for the projection operator. Data Knowl Eng 68(1):146–172

    Article  Google Scholar 

  • Granvilliers L, Goualard F, Benhamou F (1999) Box consistency through weak box consistency. In: 11th IEEE international conference on tools with artificial intelligence (ICTAI’99), Chicago, 8–10 Nov 1999, pp 373–380

    Google Scholar 

  • Grumbach S, Rigaux P, Segoufin L (1998) The DEDALE system for complex spatial queries. In: SIGMOD conference. ACM, New York, pp 213–224

    Google Scholar 

  • Jaffar J, Maher MJ (1994) Constraint logic programming: a survey. J Logic Program 19/20:503–581

    Article  MathSciNet  MATH  Google Scholar 

  • Kanellakis PC, Kuper GM, Revesz PZ (1990) Constraint query languages. In: Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (PODS’90), Nashville, pp 299–313

    Google Scholar 

  • Lin PL, Tan WH (2003) An efficient method for the retrieval of objects by topological relations in spatial database systems. Inf Process Manage 39(4): 543–559

    Article  MATH  Google Scholar 

  • Marriott K, Stuckey PJ (1998) Programming with constraints. An introduction. Simplification, optimization and implication. MIT, Cambridge

    Google Scholar 

  • Revesz PZ (2001) Evaluation of queries. Introduction to constraint databases. Springer, New York

    Google Scholar 

  • Revesz PZ (1998) Safe query languages for constraint databases. ACM Trans Database Syst 23(1): 58–99

    Article  Google Scholar 

  • Revesz PZ (2000) The DISCO system. In: Constraint databases. Springer, Berlin/Heidelberg, pp 383– 389

    Chapter  Google Scholar 

  • Revesz PZ (2002) Introduction to constraint databases. Texts in computer science. Springer, New York

    MATH  Google Scholar 

  • Revesz PZ (2010) Introduction to databases: from biological to spatio-temporal, 1st edn. Springer Publishing Company Incorporated, New York

    Book  MATH  Google Scholar 

  • Revesz PZ, Li Y (1997) MLPQ: a linear constraint database system with aggregate operators. In: Proceedings of the international database engineering and applications symposium (IDEAS 1997), Concordia University, Montreal, 25–27 Aug 1997, pp 132–137

    Google Scholar 

  • Revesz PZ, Wu S (2006) Spatiotemporal reasoning about epidemiological data. Artif Intell Med 38(2): 157–170

    Article  Google Scholar 

  • Revesz PZ, Chen R, Kanjamala P, Li Y, Liu Y, Wang Y (2000) The mlpq/gis constraint database system. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data, Dallas, 16–18 May 2000. ACM p 601

    Google Scholar 

  • Rochart G, Lorca X, Jussien N (2008) Choco. a java constraint programming library. Reference manual http://www.emnfr/z-info/choco-solver/

  • Tøssebro E, Nygård M (2011) Representing topological relationships for spatiotemporal objects. GeoInformatica 15(4):633–661

    Article  Google Scholar 

  • Wolfram R (2003) Mathematica 5. Reference Manual April

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Ministry of Science and Technology of Spain (TIN2015-63502-C3-2-R) and the European Regional Development Fund (ERDF/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MaríaTeresa Gómez-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gómez-López, M., Gasca, R. (2017). Object Relational Constraint Databases for GIS. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1598

Download citation

Publish with us

Policies and ethics