Skip to main content

Data Mining of Constraint Databases

  • Reference work entry
  • First Online:
Encyclopedia of GIS
  • 161 Accesses

Definition

Many data mining algorithms can be extended and applied to constraint databases (Lakshmanan et al. 2003; Mohan and Revesz 2014; Revesz 2010; Turmeaux and Vrain 1999). Constraint databases are used in data mining because data mining algorithms such as decision trees (Quinlan 1986) and support vector machines (Vapnik 1995) generate classifications that can be naturally represented by constraint databases (Geist 2002; Johnson et al. 2000; Lakshmanan et al. 2003; Turmeaux and Vrain 1999). The constraint database representation enables querying the classification data and to further enhance the data mining results.

Main Text

Constraint databases are convenient in representing and further querying the results of data mining classifications (Lakshmanan et al. 2003; Mohan and Revesz 2014; Revesz 2010; Turmeaux and Vrain 1999). Fig. 1 shows an example from Chapter 17 of (Revesz 2010) is a decision tree that classifies primary biliary cirrhosis patients according to the drug that is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Geist I (2002) A framework for data mining and KDD. In: Haddad H, Papadopoulos G (eds) Proceedings of the ACM symposium on applied computing. ACM, New York, pp 508–13

    Google Scholar 

  • Johnson T, Lakshmanan LVS, Ng RT (2000) The 3W model and algebra for unified data mining. In: Proceedings of the IEEE international conference on very large databases. Morgan Kaufmann, pp 21–32

    Google Scholar 

  • Lakshmanan LVS, Leung CKS, Ng RT (2003) Efficient dynamic mining of constrained frequent sets. ACM Trans Database Syst. Cairo, Egypt, 28(4):337–389

    Google Scholar 

  • Mohan A, Revesz PZ (2014) Applications of spatio-temporal data mining to North Platte River reservoirs. In: Proceedings of the 18th international database engineering and applications symposium, Porto. ACM, pp 306–309

    Google Scholar 

  • Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106

    Google Scholar 

  • Revesz PZ (2010) Introduction to databases: from biological to spatio-temporal. Springer, New York

    Book  MATH  Google Scholar 

  • Revesz PZ (2014) A method for predicting the citations to the scientic publications of individual researchers. In: Proceedings of the 18th international database engineering and applications symposium, Porto. ACM, pp 9–18

    Google Scholar 

  • Revesz PZ, Triplet T (2010) Classification integration and reclassification using constraint databases. Artif Intell Med 42(3):79–91

    Article  Google Scholar 

  • Revesz PZ, Triplet T (2011) Temporal data classication using linear classiers. Inf Syst 36(1):30–41

    Article  Google Scholar 

  • Turmeaux T, Vrain C (1999) Learning in constraint databases. Lecture Notes in Computer Science, vol 1721. Springer, Berlin/New York, pp 196–207

    Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

Recommended Reading

  • Gomez-Lopez MT, Ceballos R, Gasca RM, Del Valle C (2009) Developing a labelled object-relational constraint database architecture for the projection operator. Data Knowl Eng 68(1):146–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Revesz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Revesz, P. (2017). Data Mining of Constraint Databases. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1600

Download citation

Publish with us

Policies and ethics