Skip to main content

Integration of Spatial Constraint Databases

  • Reference work entry
  • First Online:
Encyclopedia of GIS
  • 93 Accesses

Synonyms

Classification integration; Constraint programming; Spatiotemporal integration

Historical Background

Geospatial data are data coupled with some information about the location where the data were collected or measured. For example, a photography may be associated with the location where it was shot. We can distinguish two main types of geospatial data: rasters and vectors. While the same data can usually be represented in both models, there are key differences between the two models, resulting in different use-cases:

The raster data modelrely on a discrete regular grid of individual and usually square cells, where each cell represents a spatial position and each piece of data is associated with one or more cells. Raster models are best suited to represent data that vary continuously, for example, aerial and satellite imagery or elevation surfaces. The spatial resolution of raster data depends on the resolution of the grid and is determined at the data acquisition phase. For...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bishop B, Fischer F, Keller U, Steinmetz N, Fuchs C, Pressnig M (2008) Integrated rule inference system Software available at: www.iris-reasoner.org. Accessed: 16 May 2009

  • Brodsky A, Segal V, Chen J, Exarkhopoulo P (1997) The CCUBE constraint object-oriented database system. Constraints 2(3–4):245–77

    Article  MATH  Google Scholar 

  • Chomicki J, Haesevoets S, Kuijpers B, Revesz P (2003a) Classes of spatiotemporal objects and their closure properties. Ann Math Artif Intell 39(4): 431–461

    Article  MathSciNet  MATH  Google Scholar 

  • Chomicki J, Goldin DQ, Kuper GM, Toman D (2003b) Variable independence in constraint databases. IEEE Trans Knowl Data Eng 15(6):1422–1436

    Article  Google Scholar 

  • Duffy KR, Bordenave C, Leith DJ (2013) Decentralized constraint satisfaction. IEEE/ACM Trans Netw 21(4):1298–1308

    Article  Google Scholar 

  • Fischetti M, Monaci M, Salvagnin D (2014) Self-splitting of workload in parallel computation. In: Simonis H (ed) Integration of AI and OR techniques in constraint programming. Volume 8451 of lecture notes in computer science. Springer International Publishing, New York, pp 394–404

    Google Scholar 

  • Foth N (2010) Long-term change around skytrain stations in Vancouver, Canada: a demographic shift-share analysis. Geogr Bull 51:37–52

    MathSciNet  Google Scholar 

  • Gahlot V, Swami BL, Parida M, Kalla P (2012) User oriented planning of bus rapid transit corridor in GIS environment. Int J Sustain Built Environ 1:102–109

    Article  Google Scholar 

  • Grumbach S, Rigaux P, Segoufin L (1998) The DEDALE system for complex spatial queries, pp 213-24. In: Proc. ACM SIGMOD International Conference on Management of Data, Tucson, 1998

    Google Scholar 

  • ISO (2004) Geographic information—simple feature access—part 1: common architecture. ISO 19125–1:2004, International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (2008) Geographic information—simple feature access—part 2: SQL option. ISO 19125–2:2004, International Organization for Standardization, Geneva

    Google Scholar 

  • Kanellakis PC, Kuper GM, Revesz P (1995) query languages. J Comput Syst Sci 51(1):26–52

    Article  MathSciNet  Google Scholar 

  • Kowalski RA (1988) The early years of logic programming. Commun ACM 31(1):38–43

    Article  Google Scholar 

  • Kuper GM, Libkin L, Paredaens J (2000) Constraint databases. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Leite AR, Enembreck F, Barthès J-PA (2014) Distributed constraint optimization problems: review and perspectives. Expert Syst Appl 41(11):5139–5157

    Article  Google Scholar 

  • Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106

    Google Scholar 

  • Quinlan JR (1996) Improved use of continuous attributes in c4.5. J Artif Intell Res 4:77–90

    MATH  Google Scholar 

  • Revesz P (2010) Introduction to databases: from biological to spatio-temporal. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Revesz PZ, Li Y (1997) Mlpq: a linear constraint database system with aggregate operators. In: Proceedings IDEAS’97 international database engineering and applications symposium. IEEE Computer Society, Washington, DC, pp 132–137

    Google Scholar 

  • Revesz P, Triplet T (2008) Reclassification of linearly classified data using constraint databases. In: 12th East European conference on advances of databases and information systems. Springer-Verlag, Berlin, pp 231–245

    Google Scholar 

  • Revesz P, Triplet T (2009) Classification integration and reclassification using constraint databases. Artif Intell Med 49(2):79–91

    Article  Google Scholar 

  • Revesz P, Triplet T (2011) Temporal data classification using linear classifiers. Inf Syst 36(1):30–41

    Article  Google Scholar 

  • Revesz P, Wu S (2006) Spatiotemporal reasoning about epidemiological data. Artif Intell Med 38(2):157–170

    Article  Google Scholar 

  • Revesz P, Chen R, Kanjamala P, Li Y, Liu Y, Wang Y (2000) The MLPQ/GIS constraint database system. In: Proceedings ACM-SIGMOD international conference on management of data. ACM Press, New York, p 601

    Google Scholar 

  • Rigaux P, Scholl M, Voisard A (2000) Introduction to spatial databases: applications to GIS. Morgan Kaufmann, Burlington

    Google Scholar 

  • Salazar-Aguilar MA, Langevin A, Laporte G (2012) Synchronized arc routing for snow plowing operations. Comput Oper Res 39:1432–1440

    Article  MathSciNet  MATH  Google Scholar 

  • Saraswat V (2014) Concurrent constraint programming research programmes – redux. In: O’Sullivan B (ed) Principles and practice of constraint programming. Volume 8656 of lecture notes in computer science. Springer International Publishing, New York, pp 6–8

    Google Scholar 

  • Ullman JD (1989) Principles of database and knowledge-base systems. Computer Science Press/Freeman, Rockville/Oxford

    Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Triplet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Triplet, T. (2017). Integration of Spatial Constraint Databases. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1603

Download citation

Publish with us

Policies and ethics