Definition
Social media provide a convenient platform for users to create and share content or to participate in online social activities. With the development of sensor technologies, it also generates large amount of spatiotemporal data, such as check-in records, user restaurant reviews, and geo-temporal tagged tweets. This entry specifically considers analyzing the spatiotemporal patterns in social media data. The problem involves identifying spatiotemporal correlations, building spatiotemporal models, and making predictions in space and time. Given that spatiotemporal observations have complex correlations, the major challenge of the problem is how to take into account the spatial and temporal correlations within the context of social media.
Historical Background
Spatiotemporal analysis for social media data is a relatively young area. Many efforts have been focused on geographical topic discovery,...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Agarwal D, Chen B-C, Elango P (2010) Fast online learning through offline initialization for time-sensitive recommendation. In: KDD, Washington, DC. ACM, pp 703–712
Ahmed A, Hong L, Smola AJ (2013) Hierarchical geographical modeling of user locations from social media posts. In: Proceedings of the 22nd international conference on World Wide Web, Rio de Janeiro. International World Wide Web Conferences Steering Committee, pp 25–36
Backstrom L, Sun E, Marlow C (2010) Find me if you can: improving geographical prediction with social and spatial proximity. In: WWW, Raleigh. ACM, pp 61–70
Bahadori MT, Liu Y, Xing EP (2013) Fast structure learning in generalized stochastic processes with latent factors. In: KDD, Chicago. ACM, pp 284–292
Bahadori MT, Yu QR, Liu Y (2014) Fast multivariate spatiotemporal analysis via low rank tensor learning. In: NIPS, Montreal, pp 3491–3499
Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
Chae J, Thom D, Bosch H, Jang Y, Maciejewski R, Ebert DS, Ertl T (2012) Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In: IEEE conference on visual analytics science and technology, Seattle
Cheng Z, Caverlee, J, Lee K (2010) You are where you tweet: a content-based approach to geo-locating Twitter users. In: CIKM, Toronto. ACM, pp 759–768
Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, San Diego. ACM, pp 1082–1090
Crandall DJ, Backstrom L, Cosley D, Suri S, Huttenlocher D, Kleinberg J (2010) Inferring social ties from geographic coincidences. PNAS 107(52):22436–22441
Dalvi N, Kumar R, Pang B (2012) Object matching in tweets with spatial models. In: WSDM, Seattle. ACM, pp 43–52
Deshpande A, Vempala S (2006) Adaptive sampling and fast low-rank matrix approximation. In: Approximation, randomization, and combinatorial optimization. Algorithms and techniques. Springer, pp 292–303
Karatzoglou A, Baltrunas L, Church K, Böhmer M (2012) Climbing the app wall: enabling mobile app discovery through context-aware recommendations. In: Proceedings of the 21st ACM international conference on information and knowledge management, Maui. ACM, pp 2527–2530
Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500
Lauw HW, Lim E-P, Pang H, Tan T-T (2005) Social network discovery by mining spatiotemporal events. Comput Math Organ Theory 11(2):97–118
Li R, Li B, Jin C, Xue X, Zhu X (2011) Tracking user-preference varying speed in collaborative filtering. In: AAAI, San Francisco
Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y (2014) Geomf: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York. ACM, pp 831–840
Lin Y-R, Sundaram H, De Choudhury M, Kelliher A (2009) Temporal patterns in social media streams: theme discovery and evolution using joint analysis of content and context. In: IEEE international conference on multimedia and expo (ICME 2009), New York. IEEE, pp 1456–1459
Liu G, Fu Y, Xu T, Xiong H, Chen G, Discovering temporal retweeting patterns for social media marketing campaigns
Lu Z, Agarwal D, Dhillon IS (2009) A spatiotemporal approach to collaborative filtering. In: RecSys, New York. ACM, pp 13–20
Mazumder A, Das A, Kim N, Gokalp S, Sen A, Davulcu H (2013) Spatiotemporal signal recovery from political tweets in Indonesia. In: Social computing, Washington, DC, pp 280–287
Mei Q, Liu C, Su H, Zhai C (2006) A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In: Proceedings of the 15th international conference on World Wide Web, Edinburgh. ACM, pp 533–542
Munro R (2011) Subword and spatiotemporal models for identifying actionable information in Haitian Kreyol. In: CoNLL, Portland, pp 68–77
Rattenbury T, Good N, Naaman M (2007) Towards automatic extraction of event and place semantics from Flickr tags. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, Amsterdam. ACM, pp 103–110
Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World Wide Web, Raleigh. ACM, pp 851–860
Sengstock C, Gertz M, Flatow F, Abdelhaq H (2013) A probablistic model for spatiotemporal signal extraction from social media. In: SIGSPATIAL, Orlando. ACM, pp 274–283
Sidiropoulos ND, Bro R, Giannakis GB (2000) Parallel factor analysis in sensor array processing. IEEE Trans Signal Process 48(8):2377–2388
Sigurbjörnsson B, Van Zwol R (2008) Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th international conference on World Wide Web, Beijing. ACM, pp 327–336
Singh VK, Gao M, Jain R (2010) Situation detection and control using spatiotemporal analysis of microblogs. In: WWW, Raleigh. ACM, pp 1181–1182
Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems, Lake Tahoe, pp 2951–2959
Wang E, Salazar E, Dunson D, Carin L et al (2013) Spatiotemporal modeling of legislation and votes. Bayesian Anal 8(1):233–268
Weng J, Lee B-S (2011) Event detection in Twitter. ICWSM 11:401–408
Xu J-M, Bhargava A, Nowak R, Zhu X (2012) Socioscope: spatiotemporal signal recovery from social media. In: Machine learning and knowledge discovery in databases, Beijing. Springer, pp 644–659
Xu J-M, Bhargava A, Nowak R, Zhu X (2013) Socioscope: spatiotemporal signal recovery from social media. In: ECML PKDD, Prague
Yan X, Guo J, Lan Y, Cheng X (2013) A biterm topic model for short texts. In: Proceedings of the 22nd international conference on World Wide Web, Rio de Janeiro. International World Wide Web Conferences Steering Committee, pp 1445–1456
Yin Z, Cao L, Han J, Zhai C, Huang T (2011) Geographical topic discovery and comparison. In: Proceedings of the 20th international conference on World Wide Web, Hyderabad. ACM, pp247–256
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this entry
Cite this entry
Yu, R., Liu, Y. (2017). Spatiotemporal Analysis of Social Media Data. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1629
Download citation
DOI: https://doi.org/10.1007/978-3-319-17885-1_1629
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17884-4
Online ISBN: 978-3-319-17885-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering