Definition
Constraint databases generalize relational databases by finitely representing infinite relations. In the constraint data model, each attribute is associated with an attribute variable, and the value of an attribute in a relation is specified implicitly using constraints. Compared with the traditional relational databases, constraint databases offer an extra layer of data abstraction, which is called the constraint level (Revesz 2002). It is the constraint level that makes it possible for computers to use finite number of tuples to represent infinite number of tuples at the logical level.
It is very common in GIS that sample measurements are taken only at a set of points. Interpolation is based on the assumption that things that are close to one...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Gao J, Revesz P (2006) Voting prediction using new spatiotemporal interpolation methods. In: Proceedings of the seventh annual international conference on digital government research, San Diego
Li J, Narayanan R, Revesz P (2003) A shape-based approach to change detection and information mining in remote sensing. In: Chen CH (ed) Frontiers of remote sensing information processing. WSP, Singapore/River Edge, pp 63–86
Li L (2003) Spatiotemporal interpolation methods in GIS. Ph.D thesis, University of Nebraska-Lincoln, Lincoln
Li L, Li Y, Piltner R (2004) A new shape function based spatiotemporal interpolation method. In: Proceedings of the first international symposium on constraint databases 2004. Lecture notes in computer science, vol 3074. Springer, Berlin/Heidelberg/New York, pp 25–39
Li L, Revesz P (2002) A comparison of spatio-temporal interpolation methods. In: Proceedings of the second international conference on GIScience 2002. Lecture notes in computer science, vol 2478. Springer, Berlin, Heidelberg, New York, pp 145–160
Li L, Revesz P (2004) Interpolation methods for spatio-temporal geographic data. J Comput Environ Urban Syst 28(3):201–227
Li L, Zhang X, Piltner R (2006) A spatiotemporal database for ozone in the conterminous U.S. In: Proceedings of the thirteenth international symposium on temporal representation and reasoning, Budapest. IEEE, pp 168–176
Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer, Berlin/Heidelberg/New York
Revesz P (2002) Introduction to constraint databases. Springer, New York
Revesz P, Li L (2002) Constraint-based visualization of spatial interpolation data. In: Proceedings of the sixth international conference on information visualization. IEEE Press, London/England, pp 563–569
Revesz P, Li L (2002) Representation and querying of interpolation data in constraint databases. In: Proceedings of the second national conference on digital government research. Los Angeles, California, pp 225–228
Revesz P, Li L (2003) Constraint-based visualization of spatiotemporal databases. In: Advances in geometric modeling, chapter 20. Wiley, England, pp 263–276
Revesz P, Wu S (2006) Spatiotemporal reasoning about epidemiological data, Artificial Intelligence in Medicine, 38(2):157–170
Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data. In: 23nd national conference ACM, Las Vegas. ACM, pp 517–524
Zienkiewics OC, Taylor RL (2000) Finite element method. The basis, vol 1. Butterworth Heinemann, London
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this entry
Cite this entry
Li, L. (2017). Constraint Databases and Data Interpolation. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_188
Download citation
DOI: https://doi.org/10.1007/978-3-319-17885-1_188
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17884-4
Online ISBN: 978-3-319-17885-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering