Skip to main content

Bayesian Spatial Regression for Multisource Predictive Mapping

  • Reference work entry
  • First Online:
Encyclopedia of GIS

Synonyms

Bayesian spatial regression; Pixel-based prediction; Spatial regression

Definition

Georeferenced ground measurements for attributes of interest and a host of remotely sensed variables are coupled within a Bayesian spatial regression model to provide predictions across the domain of interest. As the name suggests, multisource refers to multiple sources of data which share a common coordinate system and can be linked to form sets of regressands or response variables, y(s), and regressors or covariates, x (s ), where the s denotes a known location in \(\mathbb{R}^{2}\)(e.g., easting-northing or latitude-longitude). Interest here is in producing spatially explicit predictions of the response variables using the set of covariates. Typically, the covariates can be measured at any location across the domain of interest and help explain the variation in the set of response variables. Within a multisource setting, covariates commonly include multitemporal spectral components from...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson PM, Webster R, Curran PJ (1994) Cokriging with airborne MSS imagery. Remote Sens Environ 50:335–345

    Article  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  • Banerjee S, Finley AO (2007) Bayesian multi-resolution modelling for spatially replicated datasets with application to forest biomass data. J Stat Plann Inference. doi:10.1016/j.jspi.2006.05.024

    MATH  Google Scholar 

  • Banerjee S, Johnson GA (2006) Coregionalized single and multi-resolution spatially varying growth-curve modelling. Biometrics 62:864–876

    Article  MathSciNet  MATH  Google Scholar 

  • Berterretche M, Hudak AT, Cohen WB, Maiersperger TK, Gower ST, Dungan J (2005) Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sens Environ 96:49–61

    Article  Google Scholar 

  • Bhatti AU, Mulla DJ, Frazier BE (1991) Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sens Environ 37(3):181–191

    Article  Google Scholar 

  • Campbell JB (2006) Introduction to remote sensing, 4th edn. The Guilford Press, New York, p 626

    Google Scholar 

  • Carlin BP, Louis TA (2000) Bayes and empirical Bayes methods for data analysis, 2nd edn. Chapman and Hall/CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Chilées JP, Delfiner P (1999) Geostatistics: modelling spatial uncertainty. Wiley, New York

    Book  MATH  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Cromley EK, McLafferty SL (2002) GIS and public health. Guilford Publications Inc., New York

    Google Scholar 

  • Diggle PJ, Ribeiro PJ Jr (2002) Bayesian inference in Gaussian model-based geostatistics. Geogr Environ Model 6:29–146

    Article  Google Scholar 

  • Finley AO, Banerjee S, Carlin BP (2007) spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. J Stat Softw 19:4

    Google Scholar 

  • Gelfand AE, Ghosh SK (1998) Model choice: a minimum posterior predictive loss approach. Biometrika 85:1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 3:515–533

    Article  MATH  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  • Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D (2002) The national elevation dataset. Photogramm Eng Remote Sens 68(1):5–12

    Google Scholar 

  • Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national land-cover database for the United States. Photogramm Eng Remote Sens 70:829–840

    Article  Google Scholar 

  • Huang C, Wylie B, Homer C, Yang L, Zylstra G (2002) Derivation of a tasseled cap transformation based on landsat 7 at-satellite reflectance. Int J Remote Sens 8:1741–1748

    Article  Google Scholar 

  • Jones CB (1997) Geographical information systems and computer cartography. Addison Wesley Longman, Harlow

    Google Scholar 

  • Kneib T, Fahrmeir L (2007) A mixed model approach for geoadditive hazard regression. Scand J Stat 34: 207–228

    Article  MathSciNet  MATH  Google Scholar 

  • Kooistra L, Huijbregts MAJ, Ragas AMJ, Wehrens R, Leuven RSEW (2005) Spatial variability and uncertainty in ecological risk assessment: a case study on the potential risk of cadmium for the little owl in a Dutch River Flood Plain. Environ Sci Technol 39: 2177–2187

    Article  Google Scholar 

  • Mather PM (2004) Computer processing of remotely-sensed images, 3rd edn. Wiley, Hoboken, p 442

    Google Scholar 

  • Möller J (2003) Spatial statistics and computational method. Springer, New York

    Book  MATH  Google Scholar 

  • National Academy of Sciences (1970) Remote Sensing with Special Reference to Agriculture and Forestry. National Academy of Sciences, Washington, DC, p 424

    Google Scholar 

  • Paciorek CJ, Schervish MJ (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17:483–506

    Article  MathSciNet  Google Scholar 

  • Riccio A, Barone G, Chianese E, Giunta G (2006) A hierarchical Bayesian approach to the spatio-temporal modeling of air quality data. Atmosph Environ 40:554–566

    Article  Google Scholar 

  • Richards JA, Xiuping J (2005) Remote sensing digital image analysis, 4th edn. Springer, Heidelberg, p 439

    Google Scholar 

  • Robert C (2001) The Bayesian choice, 2nd edn. Springer, New York

    Google Scholar 

  • Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, New York

    Book  MATH  Google Scholar 

  • Schabenberger O, Gotway CA (2004) Statistical methods for spatial data analysis. Texts in statistical science series. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Scheiner SM, Gurevitch J (2001) Design and analysis of ecological experiments, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion and rejoinder). J R Stat Soc Ser B 64:583–639

    Article  MathSciNet  MATH  Google Scholar 

  • Thayer WC, Griffith DA, Goodrum PE, Diamond GL, Hassett JM (2003) Application of geostatistics to risk assessment. Risk Anal Int J 23(5):945–960

    Article  Google Scholar 

  • Wackernagel H (2006) Multivariate geostatistics: an introduction with applications, 3nd edn. Springer, New York

    MATH  Google Scholar 

  • Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, New York

    MATH  Google Scholar 

Recommended Reading

  • Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35:403–410

    Article  Google Scholar 

  • Wang Y, Zheng T (2005) Comparison of light detection and ranging and national elevation dataset digital elevation model on floodplains of North Carolina. Natl Hazards Rev 6(1):34–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Finley, A.O., Banerjee, S. (2017). Bayesian Spatial Regression for Multisource Predictive Mapping. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_97

Download citation

Publish with us

Policies and ethics