Skip to main content

Abstract

Exercising with the use of augmented visual feedback for improving functional motor behavior and particularly balance and locomotion has expanded over the late years. As a result, several visual feedback protocols, systems and devices have been developed and commercialized promising an effective means of improving balance function in aging and disease alleviating the risk of falling. A major challenge however, is how efficiently these devices improve balance and prevent falling. Through visually guided practice a specific internal visuo-motor transformation of the practiced visuo-motor task is acquired. Lately however, the generalization of the acquired visuo-motor transformation to other motor tasks has been questioned. In this chapter we review research evidence showing how the human brain uses visual information to control and improve motor performance and postural control in particular and what are the task and stimuli characteristics that optimize visuo-motor learning. Studies examining the effectiveness of visual feedback protocols in older adults’ balance rehabilitation are reviewed and directions for future research and development are discussed in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miall, R. C., Weir, D. J., & Stein, J. F. (1993). Intermittency in human manual tracking tasks. Journal of Motor Behavior, 25(1), 53–63.

    Article  Google Scholar 

  2. Slifkin, A. B., Vaillancourt, D. E., & Newell, K. M. (2000). Intermittency in the control of continuous force production. Journal of Neurophysiology, 84(4), 1708–1718.

    Google Scholar 

  3. Miall, R. C., Haggard, P. N., & Cole, J. D. (1995). Evidence of a limited visuo-motor memory used in programming wrist movements. Experimental Brain Research, 107(2), 267–280.

    Article  Google Scholar 

  4. Shumway-Cook, A., Anson, D., & Haller, S. (1988). Postural sway biofeedback: Its effect on reestablishing stance stability in hemiplegic patients. Archives of Physical Medicine and Rehabilitation, 69(6), 395–400.

    Google Scholar 

  5. Gil-Gomez, J. A., Llorens, R., Alcaniz, M., & Colomer, C. (2011). Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: A pilot randomized clinical trial in patients with acquired brain injury. Journal of Neuroengineering and Rehabilitation, 8, 30.

    Article  Google Scholar 

  6. Morton, S. M., & Bastian, A. J. (2004). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92(4), 2497–2509.

    Article  Google Scholar 

  7. Savin, D. N., & Morton, S. M. (2008). Asymmetric generalization between the arm and leg following prism-induced visuomotor adaptation. Experimental Brain Research, 186(1), 175–182.

    Article  Google Scholar 

  8. Mackrous, I., & Proteau, L. (2007). Specificity of practice results from differences in movement planning strategies. Experimental Brain Research, 183(2), 181–193.

    Article  Google Scholar 

  9. Faugloire, E., Bardy, B. G., & Stoffregen, T. A. (2009). (De)stabilization of required and spontaneous postural dynamics with learning. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 170–187.

    Google Scholar 

  10. Hamman, R. G., Mekjavic, I., Mallinson, A. I., & Longridge, N. S. (1992). Training effects during repeated therapy sessions of balance training using visual feedback. Archives of Physical Medicine and Rehabilitation, 73(8), 738–744.

    Google Scholar 

  11. Heuer, H., & Hegele, M. (2008). Constraints on visuo-motor adaptation depend on the type of visual feedback during practice. Experimental Brain Research, 185(1), 101–110.

    Article  Google Scholar 

  12. Radhakrishnan, S. M., Hatzitaki, V., Vogiannou, A., & Tzovaras, D. (2010). The role of visual cues in the acquisition and transfer of a voluntary postural sway task. Gait & Posture, 32(4), 650–655.

    Article  Google Scholar 

  13. Bausenhart, K. M., de la Rosa, M. D., & Ulrich, R. (2013). Multimodal integration of time. Experimental Psychology, 1–13.

    Google Scholar 

  14. Hinder, M. R., Woolley, D. G., Tresilian, J. R., Riek, S., & Carson, R. G. (2008). The efficacy of colour cues in facilitating adaptation to opposing visuomotor rotations. Experimental Brain Research, 191(2), 143–155.

    Article  Google Scholar 

  15. Danion, F., Duarte, M., & Grosjean, M. (2006). Variability of reciprocal aiming movements during standing: The effect of amplitude and frequency. Gait & Posture, 23(2), 173–179.

    Article  Google Scholar 

  16. Hinder, M. R., Tresilian, J. R., Riek, S., & Carson, R. G. (2008). The contribution of visual feedback to visuomotor adaptation: How much and when? Brain Research, 1197, 123–134.

    Article  Google Scholar 

  17. Duarte, M., & Zatsiorsky, V. M. (2002). Effects of body lean and visual information on the equilibrium maintenance during stance. Experimental Brain Research, 146(1), 60–69.

    Article  Google Scholar 

  18. Klein, B. E., Klein, R., Lee, K. E., & Cruickshanks, K. J. (1998). Performance-based and self-assessed measures of visual function as related to history of falls, hip fractures, and measured gait time. The Beaver Dam Eye Study. Ophthalmology, 105(1), 160–164.

    Article  Google Scholar 

  19. Chapman, G. J., & Hollands, M. A. (2006). Evidence for a link between changes to gaze behaviour and risk of falling in older adults during adaptive locomotion. Gait & Posture, 24(3), 288–294.

    Article  Google Scholar 

  20. Schillings, A. M., Mulder, T., & Duysens, J. (2005). Stumbling over obstacles in older adults compared to young adults. Journal of Neurophysiology, 94(2), 1158–1168.

    Article  Google Scholar 

  21. Dault, M. C., de Haart, M., Geurts, A. C., Arts, I. M., & Nienhuis, B. (2003). Effects of visual center of pressure feedback on postural control in young and elderly healthy adults and in stroke patients. Human Movement Science, 22(3), 221–236.

    Article  Google Scholar 

  22. Hatzitaki, V., & Konstadakos, S. (2007). Visuo-postural adaptation during the acquisition of a visually guided weight-shifting task: Age-related differences in global and local dynamics. Experimental Brain Research, 182(4), 525–535.

    Article  Google Scholar 

  23. Hu, M. H., & Woollacott, M. H. (1994). Multisensory training of standing balance in older adults: I. Postural stability and one-leg stance balance. Journal of Gerontology, 49(2), M52–M61.

    Article  Google Scholar 

  24. Rose, D. J., & Clark, S. (2000). Can the control of bodily orientation be significantly improved in a group of older adults with a history of falls? Journal of American Geriatrics Society, 48(3), 275–282.

    Article  Google Scholar 

  25. Lajoie, Y. (2004). Effect of computerized feedback postural training on posture and attentional demands in older adults. Aging Clinical and Experimental Research, 16(5), 363–368.

    Article  Google Scholar 

  26. Sihvonen, S. E., Sipila, S., & Era, P. A. (2004). Changes in postural balance in frail elderly women during a 4-week visual feedback training: A randomized controlled trial. Gerontology, 50(2), 87–95.

    Article  Google Scholar 

  27. Hatzitaki, V., Amiridis, I. G., Nikodelis, T., & Spiliopoulou, S. (2009). Direction-induced effects of visually guided weight-shifting training on standing balance in the elderly. Gerontology, 55(2), 145–152.

    Article  Google Scholar 

  28. Gouglidis, V., Nikodelis, T., Hatzitaki, V., & Amiridis, I. G. (2011). Changes in the limits of stability induced by weight-shifting training in elderly women. Experimental Aging Research, 37(1), 46–62.

    Article  Google Scholar 

  29. Hatzitaki, V., Voudouris, D., Nikodelis, T., & Amiridis, I. G. (2009). Visual feedback training improves postural adjustments associated with moving obstacle avoidance in elderly women. Gait & Posture, 29(2), 296–299.

    Article  Google Scholar 

  30. Geiger, R. A., Allen, J. B., O’Keefe, J., & Hicks, R. R. (2001). Balance and mobility following stroke: Effects of physical therapy interventions with and without biofeedback/forceplate training. Physical Therapy, 81(4), 995–1005.

    Google Scholar 

  31. Walker, C., Brouwer, B. J., & Culham, E. G. (2000). Use of visual feedback in retraining balance following acute stroke. Physical Therapy, 80(9), 886–895.

    Google Scholar 

  32. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

    Article  Google Scholar 

  33. Harbourne, R. T., & Stergiou, N. (2009). Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Physical Therapy, 89(3), 267–282.

    Article  Google Scholar 

  34. Heiden, E., & Lajoie, Y. (2010). Games-based biofeedback training and the attentional demands of balance in older adults. Aging Clinical and Experimental Research, 22(5–6), 367–373.

    Article  Google Scholar 

  35. Lamoth, C. J., Caljouw, S. R., & Postema, K. (2011). Active video gaming to improve balance in the elderly. Studies in Health Technology and Informatics, 167, 159–164.

    Google Scholar 

  36. Sveistrup, H., Thornton, M., Bryanton, C., McComas, J., Marshall, S., Finestone, H., et al. (2004). Outcomes of intervention programs using flatscreen virtual reality. Conference Proceedings: IEEE Engineering in Medicine and Biology Society, 7, 4856–4858.

    Google Scholar 

  37. Bamidis, P. D., Vivas, A. B., Styliadis, C., Frantzidis, C., Klados, M., Schlee, W., et al. (2014). A review of physical and cognitive interventions in aging. Neuroscience and Biobehavioral Reviews, 44, 206–220.

    Article  Google Scholar 

  38. Redfern, M. S., Furman, J. M., & Jacob, R. G. (2007). Visually induced postural sway in anxiety disorders. J Anxiety Disord, 21(5), 704–716.

    Google Scholar 

  39. Hatzitaki, V., Stergiou, N., Sofianidis, G., & Kyvelidou, A. (2015). Postural sway and gaze can track the complex motion of a visual target. PLoS One, 10(3), e0119828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilia Hatzitaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hatzitaki, V. (2015). The Use of Visual Feedback Techniques in Balance Rehabilitation. In: Briassouli, A., Benois-Pineau, J., Hauptmann, A. (eds) Health Monitoring and Personalized Feedback using Multimedia Data. Springer, Cham. https://doi.org/10.1007/978-3-319-17963-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17963-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17962-9

  • Online ISBN: 978-3-319-17963-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics