Abstract
We propose a new method for knowledge acquisition and ontology refinement for the Semantic Web. The method is based on a combination of the attribute exploration algorithm from the formal concept analysis and active learning approach to machine learning classification task. It enables utilization of Linked Data during the process of an ontology refinement in a manner that it is possible to use remote SPARQL endpoints. We also report on a preliminary experimental evaluation and argue that our method is reasonable and useful.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Ganter, B., et al.: Completing description logic knowledge bases using formal concept analysis. In: Proc. of IJCAI 2007, pp. 230–235. AAAI Press (2007)
Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 122 (2009)
Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 57–71. Springer, Heidelberg (2012)
Cohn, D.: Active learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 10–14. Springer, New York (2010)
Corcho, Ó., Roussey, C.: OnlynessIsLoneliness (OIL). In: Blomqvist, E., Sandkuhl, K., et al. (eds.) WOP. CEUR Workshop Proc., vol. 516. CEUR-WS.org (2009)
Dastgheib, S., Mesbah, A., Kochut, K.: mOntage: building domain ontologies from linked open data. In: IEEE Seventh International Conference on Semantic Computing (ICSC), pp. 70–77. IEEE (2013)
Dong, X., Gabrilovich, E., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proc. of the 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 601–610. ACM, New York, USA (2014)
Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: A Statistical View of Boosting: Rejoinder. The Annals of Statistics 28(2), 400–407 (2000)
Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation, W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
Kidd, A.: Knowledge acquisition. In: Kidd, A. (ed.) Knowledge Acquisition for Expert Systems, pp. 1–16. Springer, New York (1987)
Ławrynowicz, A., Tresp, V.: Introducing machine learning. In: Lehmann, J., Völker, J. (eds.) Perspectives On Ontology Learning. AKA Heidelberg (2014)
Le Bras, Y., Lenca, P., Lallich, S.: Optimonotone measures for optimal rule discovery. Computational Intelligence 28(4), 475–504 (2012)
Ling, C.X., Sheng, V.S.: Cost-sensitive learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning. LNCS, vol. 6820, pp. 231–235. Springer, Heidelberg (2010)
Rector, A., Drummond, N., et al.: OWL pizzas: practical experience of teaching OWL-DL: common errors & common patterns. In: Motta, E., Shadbolt, N., et al. (eds.) Engineering Knowledge in the Age of the Semantic Web. Lecture Notes in Computer Science, vol. 3257, pp. 63–81. Springer, Heidelberg (2004)
Rudolph, S.: Acquiring generalized domain-range restrictions. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 32–45. Springer, Heidelberg (2008)
Suárez-Figueroa, M.C., Gómez-Pérez, A., et al.: The NeOn methodology for ontology engineering. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., et al. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer, Heidelberg (2011)
Tolkien, J.R.R.: The Silmarillion. George Allen & Unwin (1977)
Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)
Zablith, F., Antoniou, G., et al.: Ontology evolution: a process-centric survey. The Knowledge Engineering Review FirstView, 1–31 (10 2014)
Zablith, F., d’Aquin, M., Sabou, M., Motta, E.: Using ontological contexts to assess the relevance of statements in ontology evolution. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 226–240. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Potoniec, J. (2015). Towards Ontology Refinement by Combination of Machine Learning and Attribute Exploration. In: Lambrix, P., et al. Knowledge Engineering and Knowledge Management. EKAW 2014. Lecture Notes in Computer Science(), vol 8982. Springer, Cham. https://doi.org/10.1007/978-3-319-17966-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-17966-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17965-0
Online ISBN: 978-3-319-17966-7
eBook Packages: Computer ScienceComputer Science (R0)