Skip to main content

Towards Ontology Refinement by Combination of Machine Learning and Attribute Exploration

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8982))

  • 1286 Accesses

Abstract

We propose a new method for knowledge acquisition and ontology refinement for the Semantic Web. The method is based on a combination of the attribute exploration algorithm from the formal concept analysis and active learning approach to machine learning classification task. It enables utilization of Linked Data during the process of an ontology refinement in a manner that it is possible to use remote SPARQL endpoints. We also report on a preliminary experimental evaluation and argue that our method is reasonable and useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Ganter, B., et al.: Completing description logic knowledge bases using formal concept analysis. In: Proc. of IJCAI 2007, pp. 230–235. AAAI Press (2007)

    Google Scholar 

  2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 122 (2009)

    Article  Google Scholar 

  3. Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 57–71. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Cohn, D.: Active learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 10–14. Springer, New York (2010)

    Google Scholar 

  5. Corcho, Ó., Roussey, C.: OnlynessIsLoneliness (OIL). In: Blomqvist, E., Sandkuhl, K., et al. (eds.) WOP. CEUR Workshop Proc., vol. 516. CEUR-WS.org (2009)

    Google Scholar 

  6. Dastgheib, S., Mesbah, A., Kochut, K.: mOntage: building domain ontologies from linked open data. In: IEEE Seventh International Conference on Semantic Computing (ICSC), pp. 70–77. IEEE (2013)

    Google Scholar 

  7. Dong, X., Gabrilovich, E., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proc. of the 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 601–610. ACM, New York, USA (2014)

    Google Scholar 

  8. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: A Statistical View of Boosting: Rejoinder. The Annals of Statistics 28(2), 400–407 (2000)

    Article  MathSciNet  Google Scholar 

  9. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation, W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

  10. Kidd, A.: Knowledge acquisition. In: Kidd, A. (ed.) Knowledge Acquisition for Expert Systems, pp. 1–16. Springer, New York (1987)

    Chapter  Google Scholar 

  11. Ławrynowicz, A., Tresp, V.: Introducing machine learning. In: Lehmann, J., Völker, J. (eds.) Perspectives On Ontology Learning. AKA Heidelberg (2014)

    Google Scholar 

  12. Le Bras, Y., Lenca, P., Lallich, S.: Optimonotone measures for optimal rule discovery. Computational Intelligence 28(4), 475–504 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ling, C.X., Sheng, V.S.: Cost-sensitive learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning. LNCS, vol. 6820, pp. 231–235. Springer, Heidelberg (2010)

    Google Scholar 

  14. Rector, A., Drummond, N., et al.: OWL pizzas: practical experience of teaching OWL-DL: common errors & common patterns. In: Motta, E., Shadbolt, N., et al. (eds.) Engineering Knowledge in the Age of the Semantic Web. Lecture Notes in Computer Science, vol. 3257, pp. 63–81. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Rudolph, S.: Acquiring generalized domain-range restrictions. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 32–45. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Suárez-Figueroa, M.C., Gómez-Pérez, A., et al.: The NeOn methodology for ontology engineering. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., et al. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer, Heidelberg (2011)

    Google Scholar 

  17. Tolkien, J.R.R.: The Silmarillion. George Allen & Unwin (1977)

    Google Scholar 

  18. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Zablith, F., Antoniou, G., et al.: Ontology evolution: a process-centric survey. The Knowledge Engineering Review FirstView, 1–31 (10 2014)

    Google Scholar 

  20. Zablith, F., d’Aquin, M., Sabou, M., Motta, E.: Using ontological contexts to assess the relevance of statements in ontology evolution. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 226–240. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jedrzej Potoniec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Potoniec, J. (2015). Towards Ontology Refinement by Combination of Machine Learning and Attribute Exploration. In: Lambrix, P., et al. Knowledge Engineering and Knowledge Management. EKAW 2014. Lecture Notes in Computer Science(), vol 8982. Springer, Cham. https://doi.org/10.1007/978-3-319-17966-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17966-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17965-0

  • Online ISBN: 978-3-319-17966-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics