Abstract
Uncertain sequence databases are widely used to model data with inaccurate or imprecise timestamps in many real world applications. In this paper, we use uniform distributions to model uncertain timestamps and adopt possible world semantics to interpret temporal uncertain database. We design an incremental approach to manage temporal uncertainty efficiently, which is integrated into the classic pattern-growth SPM algorithm to mine uncertain sequential patterns. Extensive experiments prove that our algorithm performs well in both efficiency and scalability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Trans. on Knowl. and Data Eng. 21(5), 609–623 (2009)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)
Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Zuefle, A.: Probabilistic frequent itemset mining in uncertain databases. In: SIGKDD, pp. 119–128 (2009)
Dyreson, C.E., Snodgrass, R.T.: Supporting valid-time indeterminacy. In: TODS (1998)
Chui, C.-K., Kao, B.: A decremental approach for mining frequent itemsets from uncertain data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 64–75. Springer, Heidelberg (2008)
Chui, C.-K., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 47–58. Springer, Heidelberg (2007)
Jestes, J., Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data. IEEE Transactions on Knowledge and Data Engineering 23(12), 1903–1917 (2011)
Li, Y., Bailey, J., Kulik, L., Pei, J.: Mining probabilistic frequent spatio-temporal sequential patterns with gap constraints from uncertain databases. In: ICDM, pp. 448–457 (2013)
Miliaraki, I., Berberich, K., Gemulla, R., Zoupanos, S.: Mind the gap: Large-scale frequent sequence mining. In: SIGKDD, pp. 797–808 (2013)
Muzammal, M., Raman, R.: Mining sequential patterns from probabilistic databases. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 210–221. Springer, Heidelberg (2011)
Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., Chun Hsu, M.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth. In: ICDE, pp. 215–224 (2001)
Tong, Y., Chen, L., Cheng, Y., Yu, P.S.: Mining frequent itemsets over uncertain databases. Proceeding of the VLDB Endowment 5, 1650–1661 (2012)
Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in streams with imprecise timestamps. Proc. VLDB Endow. 3(1–2), 244–255 (2010)
Zhao, Z., Yan, D., Ng, W.: Mining probabilistically frequent sequential patterns in uncertain databases. In: EDBT, pp. 74–85 (2012)
Zhao, Z., Yan, D., Ng, W.: Mining probabilistically frequent sequential patterns in large uncertain databases. IEEE Transactions on Knowledge and Data Engineering 26, 1171–1184 (2013)
Zhou, Y., Ma, C., Guo, Q., Shou, L., Chen, G.: Sequence pattern matching over time-series data with temporal uncertainty. In: EDBT, pp. 205–216 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ge, J., Xia, Y., Wang, J. (2015). Towards Efficient Sequential Pattern Mining in Temporal Uncertain Databases. In: Cao, T., Lim, EP., Zhou, ZH., Ho, TB., Cheung, D., Motoda, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2015. Lecture Notes in Computer Science(), vol 9078. Springer, Cham. https://doi.org/10.1007/978-3-319-18032-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-18032-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18031-1
Online ISBN: 978-3-319-18032-8
eBook Packages: Computer ScienceComputer Science (R0)