Skip to main content

Mining Association Rules in Graphs Based on Frequent Cohesive Itemsets

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9078))

Included in the following conference series:

Abstract

Searching for patterns in graphs is an active field of data mining. In this context, most work has gone into discovering subgraph patterns, where the task is to find strictly defined frequently re-occurring structures, i.e., node labels always interconnected in the same way. Recently, efforts have been made to relax these strict demands, and to simply look for node labels that frequently occur near each other. In this setting, we propose to mine association rules between such node labels, thus discovering additional information about correlations and interactions between node labels. We present an algorithm that discovers rules that allow us to claim that if a set of labels is encountered in a graph, there is a high probability that some other set of labels can be found nearby. Experiments confirm that our algorithm efficiently finds valuable rules that existing methods fail to discover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulrehman, D., Monteiro, P.T., Teixeira, M.C., Mira, N.P., Lourenço, A.B., dos Santos, S.C., Cabrito, T.R., Francisco, A.P., Madeira, S.C., Aires, R.S., Oliveira, A.L., Sá-Correia, I., Freitas, A.T.: YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Research 39 (2011)

    Google Scholar 

  2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. of the ACM SIGMOD Int. Conf. on Managemant of Data, pp. 207–216 (1993)

    Google Scholar 

  3. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research 1, 231–255 (1994)

    Google Scholar 

  4. Cule, B., Goethals, B.: Mining association rules in long sequences. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 300–309. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery 3, 7–36 (1999)

    Article  Google Scholar 

  6. Hendrickx, T., Cule, B., Goethals, B.: Mining cohesive itemsets in graphs. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS, vol. 8777, pp. 111–122. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., de Castro, E., Coggill, P., Corbett, M., Das, U., Daugherty, L., Duquenne, L., Finn, R.D., Fraser, M., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., McMenamin, C., Mi, H., Mutowo-Muellenet, P., Mulder, N., Natale, D., Orengo, C., Pesseat, S., Punta, M., Quinn, A.F., Rivoire, C., Sangrador-Vegas, A., Selengut, J.D., Sigrist, C.J.A., Scheremetjew, M., Tate, J., Thimmajanarthanan, M., Thomas, P.D., Wu, C.H., Yeats, C., Yong, S.Y.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research 40(D1), D306–D312 (2012)

    Article  Google Scholar 

  8. Huntley, R.P., Sawford, T., Mutowo-Meullenet, P., Shypitsyna, A., Bonilla, C., Martin, M.J., O’Donovan, C.: The goa database: gene ontology annotation updates for 2015. Nucleic Acids Research p. gku1113 (2014)

    Google Scholar 

  9. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning 50(3), 321–354 (2003)

    Article  MATH  Google Scholar 

  10. Inokuchi, A., Washio, T., Motoda, H., Kumasawa, K., Arai, N.: Basket analysis for graph structured data. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 420–432. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., Jandrasits, C., Jimenez, R.C., Khadake, J., Mahadevan, U., Masson, P., Pedruzzi, I., Pfeiffenberger, E., Porras, P., Raghunath, A., Roechert, B., Orchard, S., Hermjakob, H.: The IntAct molecular interaction database in 2012. Nucleic Acids Research 40, D841–D846 (2012)

    Article  Google Scholar 

  12. Khan, A., Yan, X., Wu, K.L.: Towards proximity pattern mining in large graphs. In: Proc. of the 2010 ACM SIGMOD Int. Conf. on Management of Data, pp. 867–878 (2010)

    Google Scholar 

  13. Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A.P., Santonico, E., Castagnoli, L., Cesareni, G.: MINT, the molecular interaction database: 2012 update. Nucleic Acids Research 40(D1), D857–D861 (2012)

    Article  Google Scholar 

  14. Nijssen, S., Kok, J.: The gaston tool for frequent subgraph mining. Electronic Notes in Theoretical Computer Science 127, 77–87 (2005)

    Article  Google Scholar 

  15. Stark, C., Breitkreutz, B.J., Chatr-aryamontri, A., Boucher, L., Oughtred, R., Livstone, M.S., Nixon, J., Auken, K.V., Wang, X., Shi, X., Reguly, T., Rust, J.M., Winter, A., Dolinski, K., Tyers, M.: The BioGRID interaction database: 2011 update. Nucleic Acids Research p. gkq1116, November 2010

    Google Scholar 

  16. Washio, T., Motoda, H.: State of the art of graph-based data mining. ACM SIGKDD Explorations Newsletter 5, 59–68 (2003)

    Article  Google Scholar 

  17. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. of the 2002 IEEE Int. Conf. on Data Mining, pp. 721–724 (2002)

    Google Scholar 

  18. Yoshida, K., Motoda, H., Indurkhya, N.: Graph-based induction as a unified learning framework. Journal of Applied Intelligence 4, 297–316 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayena Hendrickx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hendrickx, T., Cule, B., Meysman, P., Naulaerts, S., Laukens, K., Goethals, B. (2015). Mining Association Rules in Graphs Based on Frequent Cohesive Itemsets. In: Cao, T., Lim, EP., Zhou, ZH., Ho, TB., Cheung, D., Motoda, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2015. Lecture Notes in Computer Science(), vol 9078. Springer, Cham. https://doi.org/10.1007/978-3-319-18032-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18032-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18031-1

  • Online ISBN: 978-3-319-18032-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics